Discriminants of complex multiplication fields of elliptic curves over finite fields

被引:6
作者
Luca, Florian [1 ]
Shparlinski, Igor E.
机构
[1] Univ Nacl Autonoma Mexico, Inst Matemat, Morelia 58089, Michoacan, Mexico
[2] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2007年 / 50卷 / 03期
关键词
D O I
10.4153/CMB-2007-039-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that, for most of the elliptic curves E over a prime finite field F-p of p elements, the discriminant D(E) of the quadratic number field containing the endomorphism ring of E over F-p is sufficiently large. We also obtain an asymptotic formula for the number of distinct quadratic number fields generated by the endomorphism rings of all elliptic curves over F-p.
引用
收藏
页码:409 / 417
页数:9
相关论文
共 12 条
  • [1] Avanzi R., 2005, ELLIPTIC HYPERELLIPT
  • [2] The square sieve and the Lang-Trotter conjecture
    Cojocaru, AC
    Fouvry, E
    Murty, MR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2005, 57 (06): : 1155 - 1177
  • [3] Reductions of an elliptic curve and their Tate-Shafarevich groups
    Cojocaru, AC
    Duke, W
    [J]. MATHEMATISCHE ANNALEN, 2004, 329 (03) : 513 - 534
  • [4] The number of fields generated by the square root of values of a given polynomial
    Cutter, P
    Granville, A
    Tucker, TJ
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 71 - 79
  • [5] Deuring M., 1941, ABH MATH SEM HAMBURG, V14, P197, DOI 10.1007/BF02940746
  • [6] Hardy GodfreyHarold., 1979, An Introduction to the Theory of Numbers, V5
  • [7] Huxley M.N., 1981, RECENT PROGR ANAL NU, V1, P193
  • [8] IWANIEC H, 2004, AM MATH SOC COLL PUB, V53
  • [9] JAO D, RANANUJAN GRAPHS RAN
  • [10] FACTORING INTEGERS WITH ELLIPTIC-CURVES
    LENSTRA, HW
    [J]. ANNALS OF MATHEMATICS, 1987, 126 (03) : 649 - 673