Genes controlled by the essential YycG/YycF two-component system of Bacillus subtilis revealed through a novel hybrid regulator approach

被引:144
作者
Howell, A
Dubrac, S
Andersen, KK
Noone, D
Fert, J
Msadek, T
Devine, K
机构
[1] Inst Pasteur, CNRS, Ura 2172, Unite Biochim Microbienne, F-75724 Paris 15, France
[2] Univ Dublin Trinity Coll, Smurfit Inst, Dept Genet, Dublin 2, Ireland
关键词
D O I
10.1046/j.1365-2958.2003.03661.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The YycG/YycF two-component system, originally identified in Bacillus subtilis, is very highly conserved and appears to be specific to low G + C Gram-positive bacteria. This system is required for cell viability, although the basis for this and the nature of the YycF regulon remained elusive. Using a combined hybrid regulator/transcriptome approach involving the inducible expression of a PhoP'-'YycF chimerical protein in B. subtilis, we have shown that expression of yocH, which encodes a potential autolysin, is specifically activated by YycF. Gel mobility shift and DNase I footprinting assays were used to show direct binding in vitro of purified YycF to the regulatory regions of yocH as well as ftsAZ, previously reported to be controlled by YycF. Nucleotide sequence analysis and site-directed mutagenesis allowed us to define a potential consensus recognition sequence for the YycF response regulator, composed of two direct repeats: 5'-TGT A/T A A/T/C- N-5 - TGT A/T A A/T/C-3'. A DNA-motif analysis indicates that there are potentially up to 10 genes within the B. subtilis YycG/YycF regulon, mainly involved in cell wall metabolism and membrane protein synthesis. Among these, YycF was shown to bind directly to the region upstream from the ykvT gene, encoding a potential cell wall hydrolase, and the intergenic region of the tagAB/tagDEF divergon, encoding essential components of teichoic acid biosynthesis. Definition of a potential YycF recognition sequence allowed us to identify likely members of the YycF regulon in other low G + C Gram-positive bacteria, including several pathogens such as Listeria monocytogenes, Staphylococcus aureus and Streptococcus pneumoniae
引用
收藏
页码:1639 / 1655
页数:17
相关论文
共 63 条
[1]   Genetic evidence that the α5 helix of the receiver domain of PhoB is involved in interdomain interactions [J].
Allen, MP ;
Zumbrennen, KB ;
McCleary, WR .
JOURNAL OF BACTERIOLOGY, 2001, 183 (07) :2204-2211
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   PURIFICATION AND CHARACTERIZATION OF RECOMBINANT HUMAN P50(CSK) PROTEIN-TYROSINE KINASE FROM AN ESCHERICHIA-COLI EXPRESSION SYSTEM OVERPRODUCING THE BACTERIAL CHAPERONES GROES AND GROEL [J].
AMREIN, KE ;
TAKACS, B ;
STIEGER, M ;
MOLNOS, J ;
FLINT, NA ;
BURN, P .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (04) :1048-1052
[4]   Phosphate starvation-inducible proteins of Bacillus subtilis:: Proteomics and transcriptional analysis [J].
Antelmann, H ;
Scharf, C ;
Hecker, M .
JOURNAL OF BACTERIOLOGY, 2000, 182 (16) :4478-4490
[5]   Two-component signal transduction as a target for microbial anti-infective therapy [J].
Barrett, JF ;
Hoch, JA .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1998, 42 (07) :1529-1536
[6]   The crystal structure of the phosphorylation domain in PhoP reveals a functional tandem association mediated by an asymmetric interface [J].
Birck, C ;
Chen, YH ;
Hulett, FM ;
Samama, JP .
JOURNAL OF BACTERIOLOGY, 2003, 185 (01) :254-261
[7]   Pho signal transduction network reveals direct transcriptional regulation of one two-component system by another two-component regulator:: Bacillus subtilis PhoP directly regulates production of ResD [J].
Birkey, SM ;
Liu, W ;
Zhang, XH ;
Duggan, MF ;
Hulett, FM .
MOLECULAR MICROBIOLOGY, 1998, 30 (05) :943-953
[8]   Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator [J].
Blanco, AG ;
Sola, M ;
Gomis-Rüth, FX ;
Coll, M .
STRUCTURE, 2002, 10 (05) :701-713
[9]   Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria [J].
Chastanet, A ;
Fert, J ;
Msadek, T .
MOLECULAR MICROBIOLOGY, 2003, 47 (04) :1061-1073
[10]   Residue r113 is essential for PhoP dimerization and function: a residue buried in the asymmetric PhoP dimer interface determined in the PhoPN three-dimensional crystal structure [J].
Chen, YH ;
Birck, C ;
Samama, JP ;
Hulett, FM .
JOURNAL OF BACTERIOLOGY, 2003, 185 (01) :262-273