Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

被引:33
作者
Garrido, Jesus A. [1 ]
Luque, Niceto R. [2 ,3 ,4 ]
Tolu, Silvia [5 ]
D'Angelo, Egidio [6 ,7 ]
机构
[1] Univ Granada, Dept Comp Architecture & Technol, Periodista Daniel Saucedo Aranda S-N, E-18071 Granada, Spain
[2] INSERM, U968, Rue Moreau 17, F-75012 Paris, France
[3] CNRS, Inst Vis, UMR 7210, Rue Moreau 17, F-75012 Paris, France
[4] Univ Paris 06, Sorbonne Univ, UMR S 968, Pl Jussieu 4, F-75252 Paris, France
[5] Tech Univ Denmark, Ctr Playware, Dept Elect Engn, Bldg 326, DK-2800 Copenhagen, Denmark
[6] Univ Pavia, Dept Brain & Behav Sci, Via Forlanini 6, I-27100 Pavia, Italy
[7] Ist Neurol IRCCS Fdn Casimiro Mondino, Brain Connect Ctr, Via Mondino 2, I-27100 Pavia, Italy
基金
欧盟地平线“2020”;
关键词
Spiking neural network; spike-timing dependent plasticity; intrinsic plasticity; lateral inhibition; oscillations; pattern recognition; THETA-FREQUENCY RESONANCE; CEREBELLUM INPUT STAGE; HOMEOSTATIC PLASTICITY; INTRINSIC EXCITABILITY; CELLS; MODEL; NEURONS; MEMORY; PHASE; LTP;
D O I
10.1142/S0129065716500209
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly understood. Here, we have used a simple model of afferent excitatory neurons and interneurons with lateral inhibition, reproducing a network topology found in many brain areas from the cerebellum to cortical columns. When endowed with spike-timing dependent plasticity (STDP) at the excitatory input synapses and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns.Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input patterns. The combination of plasticity in lateral inhibitory connections and homeostatic mechanisms in the inhibitory interneurons optimized mutual information (MI) transfer. The storage of multiple complex patterns in plastic interneuron networks could be critical for the generation of sparse representations of information in excitatory neuron populations falling under their control.
引用
收藏
页数:27
相关论文
共 68 条
[1]  
[Anonymous], 2002, SPIKING NEURON MODEL
[2]   Biophysical and phenomenological models of multiple spike interactions in spike-timing dependent plasticity [J].
Badoual, Mathilde ;
Zou, Quan ;
Davison, Andrew P. ;
Rudolph, Michael ;
Bal, Thierry ;
Fregnac, Yves ;
Destexhe, Alain .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (02) :79-97
[3]   Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type [J].
Bi, GQ ;
Poo, MM .
JOURNAL OF NEUROSCIENCE, 1998, 18 (24) :10464-10472
[4]   A SYNAPTIC MODEL OF MEMORY - LONG-TERM POTENTIATION IN THE HIPPOCAMPUS [J].
BLISS, TVP ;
COLLINGRIDGE, GL .
NATURE, 1993, 361 (6407) :31-39
[5]   Spike timing-dependent plasticity: A Hebbian learning rule [J].
Caporale, Natalia ;
Dan, Yang .
ANNUAL REVIEW OF NEUROSCIENCE, 2008, 31 :25-46
[6]   Inhibitory and Excitatory Spike-Timing-Dependent Plasticity in the Auditory Cortex [J].
D'amour, James A. ;
Froemke, Robert C. .
NEURON, 2015, 86 (02) :514-528
[7]   TIMING IN THE CEREBELLUM: OSCILLATIONS AND RESONANCE IN THE GRANULAR LAYER [J].
D'Angelo, E. ;
Koekkoek, S. K. E. ;
Lombardo, P. ;
Solinas, S. ;
Ros, E. ;
Garrido, J. ;
Schonewille, M. ;
De Zeeuw, C. I. .
NEUROSCIENCE, 2009, 162 (03) :805-815
[8]   Theta-frequency bursting and resonance in cerebellar granule cells:: Experimental evidence and modeling of a slow K+-dependent mechanism [J].
D'Angelo, E ;
Nieus, T ;
Maffei, A ;
Armano, S ;
Rossi, P ;
Taglietti, V ;
Fontana, A ;
Naldi, G .
JOURNAL OF NEUROSCIENCE, 2001, 21 (03) :759-770
[9]   Realistic modeling of neurons and networks: towards brain simulation [J].
D'Angelo, Egidio ;
Solinas, Sergio ;
Garrido, Jesus ;
Casellato, Claudia ;
Pedrocchi, Alessandra ;
Mapelli, Jonathan ;
Gandolfi, Daniela ;
Prestori, Francesca .
FUNCTIONAL NEUROLOGY, 2013, 28 (03) :153-166
[10]   Homeostasis of intrinsic excitability: making the point [J].
D'Angelo, Egidio .
JOURNAL OF PHYSIOLOGY-LONDON, 2010, 588 (06) :901-902