The capability and certain functors of some nilpotent lie algebras of class two

被引:0
作者
Johari, Farangis [1 ]
Niroomand, Peyman [2 ]
机构
[1] Univ Fed Minas Gerais, Inst Ciencias Exatas, Dept Matemat, Av Antonio Carlos 6627, Belo Horizonte, MG, Brazil
[2] Damghan Univ, Sch Math & Comp Sci, Damghan, Iran
关键词
Nilpotent lie algebra; capability; Schur multiplier; tensor square; exterior square; SCHUR MULTIPLIER; DIMENSION;
D O I
10.1080/03081087.2021.1983514
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, the authors obtained the Schur multiplier, the non-abelian tensor square and the non-abelian exterior square of d-generator generalized Heisenberg Lie algebras of rank 1/2d(d - 1). Here, we intend to obtain the same results for d-generator generalized Heisenberg Lie algebras of rank t when 1/2d(d - 1) - 3 <= t <= 1/2d(d - 1) - 1. Then, as a result, we give similar consequences for a nilpotent Lie algebra L of class two when dim L-2 = t such that 1/2d(d - 1) -3 <= t <= 1/2d(d - 1) - 1.
引用
收藏
页码:7189 / 7203
页数:15
相关论文
共 18 条
  • [1] On characterizing nilpotent Lie algebras by their multipliers
    Batten, P
    Moneyhun, K
    Stitzinger, E
    [J]. COMMUNICATIONS IN ALGEBRA, 1996, 24 (14) : 4319 - 4330
  • [2] Batten P., 1993, THESIS N CAROLINA ST
  • [3] BLACKBURN N, 1979, J REINE ANGEW MATH, V309, P100
  • [4] A NON-ABELIAN TENSOR PRODUCT OF LIE-ALGEBRAS
    ELLIS, GJ
    [J]. GLASGOW MATHEMATICAL JOURNAL, 1991, 33 : 101 - 120
  • [5] CHARACTERIZATION OF FINITE p-GROUPS BY THEIR NON-ABELIAN TENSOR SQUARE
    Jafari, S. H.
    Saeedi, F.
    Khamseh, E.
    [J]. COMMUNICATIONS IN ALGEBRA, 2013, 41 (05) : 1954 - 1963
  • [6] Certain functors of nilpotent Lie algebras with the derived subalgebra of dimension two
    Johari, Farangis
    Niroomand, Peyman
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (01)
  • [7] Karpilovsky, 1987, LONDON MATH SOC MONO, V2, P302
  • [8] Moneyhun, 1994, ALGEBRAS GROUPS GEOM, V11, P9
  • [9] Some results on the Schur multipliers of nilpotent Lie algebra
    Niroomand, Peyman
    Johari, Farangis
    [J]. JOURNAL OF ALGEBRA, 2019, 534 : 34 - 50
  • [10] Capable Lie algebras with the derived subalgebra of dimension 2 over an arbitrary field
    Niroomand, Peyman
    Johari, Farangis
    Parvizi, Mohsen
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (03) : 542 - 554