Phase Compensation Scheme for Fiber-Optic Interferometric Vibration Demodulation

被引:29
|
作者
Chang, Tianying [1 ,2 ]
Lang, Jinpeng [1 ]
Sun, Wei [1 ]
Chen, Jiandong [1 ]
Yu, Miao [1 ]
Gao, Wenzhi [1 ]
Cui, Hong-Liang [1 ,3 ]
机构
[1] Jilin Univ, Coll Instrumentat & Elect Engn, Changchun 130061, Jilin, Peoples R China
[2] Shandong Acad Sci, Inst Automat, Jinan 250014, Shandong, Peoples R China
[3] Chinese Acad Sci, Chongqing Inst Green & Intelligent Technol, Chongqing 400714, Peoples R China
关键词
Interferometric sensor; Michelson interferometer; phase generated carrier; phase compensation; SENSOR;
D O I
10.1109/JSEN.2017.2750725
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to expand the dynamic range of fiberoptic interferometric demodulation, a novel phase compensation scheme based on the phase generated carrier arctangent algorithm (PGC-arctan) is proposed, which overcomes the limitation of the amplitude range from -pi/2 to pi/2 for arbitrary signals; and a Michelson interferometer measurement system is established to verify the rationality of the compensation algorithm. The phase compensation algorithm is based on analysis of the instantaneous function of the arctangent signal during the phase hopping process, while overcoming the problem of phase winding. Experimental results confirmed the feasibility of the phase compensation scheme as predicted by theoretical and simulation analysis. In particular, the new scheme was shown to be effective in responding to arbitrary large-amplitude and time-dependent vibrational input, with the additional benefit of a strong ability to suppress system and ambient noise.
引用
收藏
页码:7448 / 7454
页数:7
相关论文
共 50 条
  • [1] PGC-Atan Demodulation Scheme With the Carrier Phase Delay Compensation for Fiber-Optic Interferometric Sensors
    Nikitenko, Aleksandr N.
    Plotnikov, Mikhail Y.
    Volkov, Anton V.
    Mekhrengin, Mikhail V.
    Kireenkov, Aleksandr Y.
    IEEE SENSORS JOURNAL, 2018, 18 (05) : 1985 - 1992
  • [2] Phase mode-matching demodulation scheme for interferometric fiber-optic sensors
    Pang, M.
    Zhang, M.
    Wang, L. W.
    Zou, Q. L.
    Kuang, W.
    Wang, D. N.
    Liao, Y. B.
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (01) : 39 - 41
  • [3] Phase compensation in interferometric fiber-optic sensors
    Dandridge, A.
    Tveten, A.B.
    Optics Letters, 1982, 7 (06): : 279 - 281
  • [4] Fiber-optic current sensor using passive demodulation interferometric scheme
    Lin, H
    Lin, WW
    Chen, MH
    FIBER AND INTEGRATED OPTICS, 1999, 18 (02) : 79 - 92
  • [5] Phase-shifted demodulation scheme for fiber-optic interferometric sensors with combined waveform phase modulation
    Hou, Cong
    Zhu, Jun
    Liu, Bin
    Shi, Penglei
    Zhang, Mingwei
    Wang, Hui
    Luo, Jiatong
    Yu, Benli
    OPTICAL FIBER TECHNOLOGY, 2023, 75
  • [6] Improved optical pulse heterodyne demodulation scheme for fiber-optic interferometric sensors
    Lai, Haiqiang
    Wang, Jianfei
    Tu, Xiaobo
    Meng, Zhou
    AOPC 2015: OPTICAL FIBER SENSORS AND APPLICATIONS, 2015, 9679
  • [7] Phase Modulation Depth Evaluation and Correction Technique for the PGC Demodulation Scheme in Fiber-Optic Interferometric Sensors
    Volkov, Anton V.
    Plotnikov, Mikhail Y.
    Mekhrengin, Mikhail V.
    Miroshnichenko, George P.
    Aleynik, Artem S.
    IEEE SENSORS JOURNAL, 2017, 17 (13) : 4143 - 4150
  • [8] A Novel Demodulation Scheme of Fiber-Optic Interferometric Sensor Based on FM SSB Signal
    Cheng, Zhiwei
    Jin, Xiaofeng
    Jin, Xiangdong
    Yu, Xianbin
    Chen, Yi
    Cong, Bo
    Shen, Xiaoqing
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2019, 31 (08) : 607 - 610
  • [9] Quadrature demodulation with synchronous difference for interferometric fiber-optic gyroscopes
    Wang, Zinan
    Yang, Yi
    Li, Yongxiao
    Yu, Xiaoqi
    Zhang, Zhenrong
    Li, Zhengbin
    OPTICS EXPRESS, 2012, 20 (23): : 25421 - 25431
  • [10] Modified phase-generated carrier demodulation of fiber-optic interferometric ultrasound sensors
    Karim, Farzia
    Zhu, Yupeng
    Han, Ming
    OPTICS EXPRESS, 2021, 29 (16) : 25011 - 25021