Quantifying the nativeness of antibody sequences using long short-term memory networks

被引:24
作者
Wollacott, Andrew M. [1 ]
Xue, Chonghua [2 ]
Qin, Qiuyuan [2 ]
Hua, June [2 ]
Bohnuud, Tanggis [1 ]
Viswanathan, Karthik [1 ]
Kolachalama, Vijaya B. [2 ,3 ,4 ,5 ]
机构
[1] Visterra Inc, Waltham, MA 02451 USA
[2] Boston Univ, Dept Med, Sect Computat Biomed, Sch Med, Boston, MA 02118 USA
[3] Boston Univ, Hariri Inst Comp & Computat Sci & Engn, Boston, MA 02115 USA
[4] Boston Univ, Whitaker Cardiovasc Inst, Sch Med, Boston, MA 02118 USA
[5] Boston Univ, Alzheimers Dis Ctr, Boston, MA 02118 USA
基金
美国国家卫生研究院;
关键词
antibody engineering; antibody humanization; long short-term memory network; machine learning; HUMANIZATION; DESIGN;
D O I
10.1093/protein/gzz031
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Antibodies often undergo substantial engineering en route to the generation of a therapeutic candidate with good developability properties. Characterization of antibody libraries has shown that retaining native-like sequence improves the overall quality of the library. Motivated by recent advances in deep learning, we developed a bi-directional long short-term memory (LSTM) network model to make use of the large amount of available antibody sequence information, and use this model to quantify the nativeness of antibody sequences. The model scores sequences for their similarity to naturally occurring antibodies, which can be used as a consideration during design and engineering of libraries. We demonstrate the performance of this approach by training a model on human antibody sequences and show that our method outperforms other approaches at distinguishing human antibodies from those of other species. We show the applicability of this method for the evaluation of synthesized antibody libraries and humanization of mouse antibodies.
引用
收藏
页码:347 / 354
页数:8
相关论文
共 23 条
[1]   Synthetic antibody technologies [J].
Adams, Jarrett J. ;
Sidhu, Sachdev S. .
CURRENT OPINION IN STRUCTURAL BIOLOGY, 2014, 24 :1-9
[2]   RosettaAntibodyDesign (RAbD): A general framework for computational antibody design [J].
Adolf-Bryfogle, Jared ;
Kalyuzhniy, Oleks ;
Kubitz, Michael ;
Weitzner, Brian D. ;
Hu, Xiaozhen ;
Adachi, Yumiko ;
Schief, William R. ;
Dunbrack, Roland L., Jr. .
PLOS COMPUTATIONAL BIOLOGY, 2018, 14 (04)
[3]   Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity [J].
Burkovitz, Anat ;
Sela-Culang, Inbal ;
Ofran, Yanay .
FEBS JOURNAL, 2014, 281 (01) :306-319
[4]   Massively parallel de novo protein design for targeted therapeutics [J].
Chevalier, Aaron ;
Silva, Daniel-Adriano ;
Rocklin, Gabriel J. ;
Hicks, Derrick R. ;
Vergara, Renan ;
Murapa, Patience ;
Bernard, Steffen M. ;
Zhang, Lu ;
Lam, Kwok-Ho ;
Yao, Guorui ;
Bahl, Christopher D. ;
Miyashita, Shin-Ichiro ;
Goreshnik, Inna ;
Fuller, James T. ;
Koday, Merika T. ;
Jenkins, Cody M. ;
Colvin, Tom ;
Carter, Lauren ;
Bohn, Alan ;
Bryan, Cassie M. ;
Alejandro Fernandez-Velasco, D. ;
Stewart, Lance ;
Dong, Min ;
Huang, Xuhui ;
Jin, Rongsheng ;
Wilson, Ian A. ;
Fuller, Deborah H. ;
Baker, David .
NATURE, 2017, 550 (7674) :74-+
[5]   Humanization of Antibodies using a Statistical Inference Approach [J].
Clavero-Alvarez, Alejandro ;
Di Mambro, Tomas ;
Perez-Gaviro, Sergio ;
Magnani, Mauro ;
Bruscolini, Pierpaolo .
SCIENTIFIC REPORTS, 2018, 8
[6]   ANARCI: antigen receptor numbering and receptor classification [J].
Dunbar, James ;
Deane, Charlotte M. .
BIOINFORMATICS, 2016, 32 (02) :298-300
[7]   CD-HIT: accelerated for clustering the next-generation sequencing data [J].
Fu, Limin ;
Niu, Beifang ;
Zhu, Zhengwei ;
Wu, Sitao ;
Li, Weizhong .
BIOINFORMATICS, 2012, 28 (23) :3150-3152
[8]   Monoclonal antibody humanness score and its applications [J].
Gao, Sean H. ;
Huang, Kexin ;
Tu, Hua ;
Adler, Adam S. .
BMC BIOTECHNOLOGY, 2013, 13
[9]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[10]   Learning the High-Dimensional Immunogenomic Features That Predict Public and Private Antibody Repertoires [J].
Greiff, Victor ;
Weber, Cedric R. ;
Palme, Johannes ;
Bodenhofer, Ulrich ;
Miho, Enkelejda ;
Menzel, Ulrike ;
Reddy, Sai T. .
JOURNAL OF IMMUNOLOGY, 2017, 199 (08) :2985-2997