Optimization of filler type within poly(vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance

被引:50
作者
Nunes-Pereira, Joao [1 ]
Kundu, Manab [2 ]
Goren, Attila [1 ,3 ]
Silva, Maria Manuela [3 ]
Costa, Carlos M. [1 ,3 ]
Liu, Lifeng [2 ]
Lanceros-Mendez, Senentxu [1 ,4 ]
机构
[1] Univ Minho, Ctr Dept Fis, Campus Gualtar, P-4710057 Braga, Portugal
[2] Int Iberian Nanotechnol Lab INL, Av Mestre Jose Veiga, P-4715330 Braga, Portugal
[3] Univ Minho, Ctr Dept Quim, Campus Gualtar, P-4710057 Braga, Portugal
[4] Parque Cientif Tecnol Bizkaia, BCMat, Derio 48160, Spain
关键词
Nano-structures; Electrical properties; Physical properties; Chemical properties; POLYMER ELECTROLYTES; COPOLYMER; FLUORIDE-TRIFLUOROETHYLENE); FLUORIDE-TRIFLUORETHYLENE); CRYSTALLIZATION; NANOCOMPOSITES; CHALLENGES; CARBONATE; FLUORIDE; ZEOLITE;
D O I
10.1016/j.compositesb.2016.04.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Porous poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) based composite membranes filled with clays (montmorillonite, MMT), zeolites (Y zeolite, NaY), ceramics (barium titanate, BaTiO3) and carbonaceous (multiwalled-carbon nanotubes, MWCNT) fillers were prepared by solvent casting at room temperature. It is shown that, the thermal, mechanical and electrochemical properties of the membranes are not significantly affected by the presence of the fillers. On the other hand, the overall electrochemical behavior of the separator membranes improves with the inclusion of fillers, with respect to the pure polymer, as shown by the increase of the room temperature ionic conductivity for the composite membranes. Furthermore, cathodic half-cells based on composite membranes showed higher capacity retention and rate performance after 50 cycles than pristine polymer membranes. It is thus concluded that filler type deeply affects membrane separator performance in lithium-ion batteries, the P(VDF-TrFE) membrane with MMT filler being the one with the best performance among the evaluated fillers. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:94 / 102
页数:9
相关论文
共 55 条
[1]   Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview [J].
Agrawal, R. C. ;
Pandey, G. P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2008, 41 (22)
[2]   PEO-carbon composite lithium polymer electrolyte [J].
Appetecchi, GB ;
Passerini, S .
ELECTROCHIMICA ACTA, 2000, 45 (13) :2139-2145
[3]   Composite gel membranes: a new class of improved polymer electrolytes for lithium batteries [J].
Appetecchi, GB ;
Romagnoli, P ;
Scrosati, B .
ELECTROCHEMISTRY COMMUNICATIONS, 2001, 3 (06) :281-284
[4]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[5]   Battery separators [J].
Arora, P ;
Zhang, ZM .
CHEMICAL REVIEWS, 2004, 104 (10) :4419-4462
[6]   Tailoring porous structure of ferroelectric poly(vinylidene fluoride-trifluoroethylene) by controlling solvent/polymer ratio and solvent evaporation rate [J].
California, Antonio ;
Cardoso, Vanessa F. ;
Costa, Carlos M. ;
Sencadas, Vitor ;
Botelho, Gabriela ;
Gomez-Ribelles, Jose L. ;
Lanceros-Mendez, Senentxu .
EUROPEAN POLYMER JOURNAL, 2011, 47 (12) :2442-2450
[7]   ANODIC STABILITY OF PROPYLENE CARBONATE ELECTROLYTES AT POTENTIALS ABOVE 4V AGAINST LITHIUM - AN ONLINE MS AND INSITU FTIR STUDY [J].
CATTANEO, E ;
RASCH, B ;
VIELSTICH, W .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1991, 21 (10) :885-894
[8]   Electrochemical Impedance Spectroscopy [J].
Chang, Byoung-Yong ;
Park, Su-Moon .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 3, 2010, 3 :207-229
[9]   Crystallization Behavior of Poly(vinylidene fluoride) Nanocomposites Containing Multiwalled Carbon Nanotubes [J].
Chen, Dan ;
Wu, Meng ;
Wang, Weizhi ;
Liu, Tianxi .
JOURNAL OF MACROMOLECULAR SCIENCE PART B-PHYSICS, 2010, 49 (06) :1069-1082
[10]   Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries [J].
Choi, Daiwon ;
Kumta, Prashant N. .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1064-1069