A posteriori error control and adaptivity of hp-finite elements for mixed and mixed-hybrid methods

被引:5
作者
Petsche, Jan [1 ]
Schroeder, Andreas [1 ]
机构
[1] Univ Salzburg, Hellbrunner Str 34, A-5020 Salzburg, Austria
关键词
hp-FEM; Error control; Variational inequalities; Mixed and mixed-hybrid methods; VARIATIONAL-INEQUALITIES; OBSTACLE PROBLEMS; FEM; IMPLEMENTATION; APPROXIMATION; ESTIMATORS;
D O I
10.1016/j.camwa.2017.05.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, mixed and mixed-hybrid methods for h- and hp-adaptive finite elements on quadrilateral meshes are discussed for variational equations and, in particular, for variational inequalities. The main result is the derivation of reliable error estimates for mixed methods for the obstacle problem. The estimates rely on the use of a post-processing of the potential in H-1 and on the introduction of a certain Lagrange multiplier which is associated with the obstacle constraints. The error estimates consist of the dual norm of the residual, which is defined by an appropriate approximation of the Lagrange multiplier, plus some computable remainder terms. In numerical experiments, the applicability of the post processing procedure on quadrilateral meshes with multilevel hanging-nodes is verified and the use of the estimates in h- and hp-adaptive schemes is demonstrated by means of convergence rates and effectivity indices. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1661 / 1674
页数:14
相关论文
共 25 条
[1]   A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements [J].
Ainsworth, Mark .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :189-204
[2]   Non-uniform order mixed FEM approximation: Implementation, post-processing, computable error bound and adaptivity [J].
Ainsworth, Mark ;
Ma, Xinhui .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) :436-453
[3]   Error estimators for a mixed method [J].
Alonso, A .
NUMERISCHE MATHEMATIK, 1996, 74 (04) :385-395
[4]  
[Anonymous], 1988, Stud. Appl. Math., DOI DOI 10.1137/1.9781611970845
[5]   MIXED AND NONCONFORMING FINITE-ELEMENT METHODS - IMPLEMENTATION, POSTPROCESSING AND ERROR-ESTIMATES [J].
ARNOLD, DN ;
BREZZI, F .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1985, 19 (01) :7-32
[6]   Biorthogonal basis functions in hp-adaptive FEM for elliptic obstacle problems [J].
Banz, Lothar ;
Schroeder, Andreas .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (08) :1721-1742
[7]   Averaging techniques yield reliable a posteriori finite element error control for obstacle problems [J].
Bartels, S ;
Carstensen, C .
NUMERISCHE MATHEMATIK, 2004, 99 (02) :225-249
[8]   Posteriori error estimators for the Raviart-Thomas element [J].
Braess, D ;
Verfurth, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (06) :2431-2444
[9]   ERROR ESTIMATES FOR FINITE-ELEMENT SOLUTION OF VARIATIONAL INEQUALITIES [J].
BREZZI, F ;
HAGER, WW ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1978, 31 (01) :1-16
[10]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15