Dynamical analysis of Mathieu equation with two kinds of van der Pol fractional-order terms

被引:20
|
作者
Wen, Shaofang [1 ]
Shen, Yongjun [2 ]
Li, Xianghong [3 ]
Yang, Shaopu [2 ]
机构
[1] Shijiazhuang Tiedao Univ, Transportat Inst, Shijiazhuang 050043, Peoples R China
[2] Shijiazhuang Tiedao Univ, Dept Mech Engn, Shijiazhuang 050043, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
基金
中国国家自然科学基金;
关键词
Mathieu equation; Fractional-order derivative; Van der Pol oscillator; Averaging method; DUFFING OSCILLATOR; PRIMARY RESONANCE; FREQUENCY-LOCKING;
D O I
10.1016/j.ijnonlinmec.2016.05.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper the dynamics of Mathieu equation with two kinds of van der Pol (VDP) fractional-order terms is investigated. The approximately analytical solution is obtained by the averaging method. The steady-state solution, existence conditions and stability condition for the steady-state solution are presented, and it is found that the two kinds of VDP fractional coefficients and fractional orders remarkably affect the steady-state solution, which is characterized by the additional damping coefficient (ADC) and additional stiffness coefficient (ASC). The comparisons between the analytical and numerical solutions verify the correctness and satisfactory precision of the approximately analytical solution. The presented typical amplitude frequency curves illustrate the important effects of two kinds of VDP fractional-order terms on system dynamics. The application of two VDP fractional -order terms in vibration control is discussed. At last, the detailed results are summarized and the conclusions are made. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:130 / 138
页数:9
相关论文
共 50 条
  • [1] Dynamical analysis of fractional-order Mathieu equation
    Wen, Shaofang
    Shen, Yongjun
    Li, Xianghong
    Yang, Shaopu
    Xing, Haijun
    JOURNAL OF VIBROENGINEERING, 2015, 17 (05) : 2696 - 2709
  • [2] Dynamical analysis of the FitzHugh Nagumo oscillations through a modified Van der Pol equation with fractional-order derivative term
    Tabi, Conrad Bertrand
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2018, 105 : 173 - 178
  • [3] Dynamical analysis of a Van Del Pol oscillator with fractional-order derivative
    Wang X.
    Shen Y.
    Zhang N.
    Shi Y.
    Wang J.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2020, 39 (20): : 91 - 96
  • [4] Dynamics of the fractional-order Van der Pol oscillator
    Barbosa, RS
    Machado, JAT
    Ferreira, IM
    Tar, JK
    ICCC 2004: SECOND IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL CYBERNETICS, PROCEEDINGS, 2004, : 373 - 378
  • [5] More Details on Analysis of Fractional-order Van der Pol Oscillator
    Tavazoei, Mohammad S.
    Haeri, Mohammad
    Attari, Mina
    Bolouki, Sadegh
    Siami, Milad
    JOURNAL OF VIBRATION AND CONTROL, 2009, 15 (06) : 803 - 819
  • [6] Analysis on limit cycle of fractional-order van der Pol oscillator
    Shen, Yongjun
    Yang, Shaopu
    Sui, Chuanyi
    CHAOS SOLITONS & FRACTALS, 2014, 67 : 94 - 102
  • [7] Hyperchaos control and adaptive synchronization with uncertain parameter for fractional-order Mathieu–van der Pol systems
    KUMAR VISHAL
    SAURABH K AGRAWAL
    SUBIR DAS
    Pramana, 2016, 86 : 59 - 75
  • [8] Study of fractional order Van der Pol equation
    Mishra, V
    Das, S.
    Jafari, H.
    Ong, S. H.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) : 55 - 60
  • [9] An algorithm for the numerical solution of nonlinear fractional-order Van der Pol oscillator equation
    Jafari, H.
    Khalique, C. M.
    Nazari, M.
    MATHEMATICAL AND COMPUTER MODELLING, 2012, 55 (5-6) : 1782 - 1786
  • [10] Dynamical analysis of strongly nonlinear fractional-order Mathieu-Duffing equation
    Wen, Shao-Fang
    Shen, Yong-Jun
    Wang, Xiao-Na
    Yang, Shao-Pu
    Xing, Hai-Jun
    CHAOS, 2016, 26 (08)