Efficient polygonal decomposition into singular and regular regions via Voronoi diagrams

被引:0
|
作者
Rocha, J [1 ]
机构
[1] Dept Math & Comp Sci, E-07071 Palma de Mallorca, Spain
来源
15TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS: IMAGE, SPEECH AND SIGNAL PROCESSING | 2000年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper defines a polygonal decomposition into regular and singular regions, a concept that is useful for skeleton extraction and part analysis of shapes, specially, elongated figures. We define a closeness criterion among segments using the Voronoi diagram of a polygon, that together with a parallelism criterion, gives support to a new definition of regular regions. Regular regions correspond to the ones surrounded by smooth quasi-parallel contour lines, while singular regions are the polygonal regions that are not regular. We present an efficient algorithm to calculate the decomposition, and some experiments.
引用
收藏
页码:762 / 765
页数:4
相关论文
共 50 条
  • [21] Scalable recommendations using decomposition techniques based on Voronoi diagrams
    Das, Joydeep
    Majumder, Subhashis
    Gupta, Prosenjit
    Datta, Suman
    INFORMATION PROCESSING & MANAGEMENT, 2021, 58 (04)
  • [22] Dynamic domain decomposition method based on weighted Voronoi diagrams
    Muratov, R. V.
    Ryabov, P. N.
    Dyachkov, S. A.
    COMPUTER PHYSICS COMMUNICATIONS, 2023, 290
  • [23] ANISOTROPIC TRIANGULATIONS VIA DISCRETE RIEMANNIAN VORONOI DIAGRAMS
    Boissonnat, Jean-Daniel
    Rouxel-Labbe, Mael
    Wintraecken, Mathijs H. M. J.
    SIAM JOURNAL ON COMPUTING, 2019, 48 (03) : 1046 - 1097
  • [24] Cloning Voronoi Diagrams via Retroactive Data Structures
    Dickerson, Matthew T.
    Eppstein, David
    Goodrich, Michael T.
    ALGORITHMS-ESA 2010, 2010, 6346 : 362 - +
  • [25] Deterministic RG-Trees via Voronoi Diagrams
    Golbol, Ferhat
    Schmidt, Klaus Werner
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [26] Efficient computation of histograms on densely overlapped polygonal regions
    Zhang, Yuting
    Wang, Yueming
    Pan, Gang
    Wu, Zhaohui
    NEUROCOMPUTING, 2013, 118 : 141 - 149
  • [27] COMPARISON OF A REGULAR AND AN IRREGULAR DECOMPOSITION OF REGIONS AND VOLUMES
    FIALA, JC
    HARALICK, RM
    PATTERN RECOGNITION, 1987, 20 (03) : 309 - 319
  • [28] Efficient Algorithm for Constructing Order K Voronoi Diagrams in Road Networks
    Chen, Bi Yu
    Huang, Huihuang
    Chen, Hui-Ping
    Liu, Wenxuan
    Chen, Xuan-Yan
    Jia, Tao
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (04)
  • [29] An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams
    Cecilia Bohler
    Rolf Klein
    Chih-Hung Liu
    Algorithmica, 2019, 81 : 2317 - 2345
  • [30] Microphase segregation in bridging polymeric brushes: Regular and singular phase diagrams
    Klushin, LI
    Birshtein, TM
    Mercurieva, AA
    MACROMOLECULAR THEORY AND SIMULATIONS, 1998, 7 (05) : 483 - 495