An efficient Fe2O3-pillared rectorite (Fe-R) clay was successfully developed as a heterogeneous catalyst for photo-Fenton degradation of organic contaminants. X-ray diffraction analysis and high-resolution transmission electron microscope analysis clearly showed the existence of the Fe2O3 nanoparticles in the Fe-R catalyst The catalytic activity of the Fe-R catalyst was evaluated by the discoloration and chemical oxygen demand (COD) removal of an azo-dye rhodamine B (RhB, 100 mg/L) and a typical persistent organic pollutant 4-nitrophenol (4-NP, 50 mg/L) in the presence of hydrogen peroxide (H2O2) under visible light irradiation (lambda > 420 nm) It was found that the discoloration rate of the two contaminants was over 99.3%, and the COD removal rate of the two contaminants was over 87.0%. The Fe-R catalyst showed strong adsorbability for the RhB in the aqueous solution Moreover, the Fe-R catalyst still showed good stability for the degradation of RhB after five recycles Zeta potential and Fourier transform infrared spectroscopy were used to examine the photoreaction processes Finally, a possible photocatalytic mechanism was proposed