Locally conformally Kahler structures on four-dimensional solvable Lie algebras

被引:6
作者
Angella, Daniele [1 ]
Origlia, Marcos [2 ,3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via Morgagni 67-A, I-50134 Florence, Italy
[2] Katholieke Univ Leuven, Kulak Campus Kortrijk,E Sabbelaan 53, BE-8500 Kortrijk, Belgium
[3] Univ Nacl Cordoba, FaMAF CIEM, RA-5000 Cordoba, Argentina
来源
COMPLEX MANIFOLDS | 2020年 / 7卷 / 01期
关键词
locally conformally Kahler; solvable Lie algebra; INVARIANT COMPLEX STRUCTURES; MANIFOLDS; SOLVMANIFOLDS; METRICS; THEOREM;
D O I
10.1515/coma-2020-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify and investigate locally conformally Kahler structures on four-dimensional solvable Lie algebras up to linear equivalence. As an application we can produce many examples in higher dimension, here including lcK structures on Oeljeklaus-Toma manifolds, and we also give a geometric interpretation of some of the 4-dimensional structures in our classification.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 40 条
  • [1] Homogeneous locally conformally Kahler and Sasaki manifolds
    Alekseevsky, D. V.
    Cortes, V.
    Hasegawa, K.
    Kamishima, Y.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
  • [2] Locally conformally Kahler solvmanifolds: a survey
    Andrada, A.
    Origlia, M.
    [J]. COMPLEX MANIFOLDS, 2019, 6 (01): : 65 - 87
  • [3] Lattices in almost abelian Lie groups with locally conformal Kahler or symplectic structures
    Andrada, A.
    Origlia, M.
    [J]. MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) : 389 - 417
  • [4] Locally conformally Kahler structures on unimodular Lie groups
    Andrada, A.
    Origlia, M.
    [J]. GEOMETRIAE DEDICATA, 2015, 179 (01) : 197 - 216
  • [5] Andrada A., 2020, ASIAN J MATH, V24, P117
  • [6] Angella D., 2019, ANN SC NORM SUPER PI, V5, DOI [10.2422/2036-2145.201708_015, DOI 10.2422/2036-2145.201708_015]
  • [7] Barberis ML, 2004, J LIE THEORY, V14, P25
  • [8] Locally conformally symplectic and kahler geometry
    Bazzoni, Giovanni
    [J]. EMS SURVEYS IN MATHEMATICAL SCIENCES, 2018, 5 (1-2) : 129 - 154
  • [9] Vaisman nilmanifolds
    Bazzoni, Giovanni
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2017, 49 (05) : 824 - 830
  • [10] On the metric structure of non-Kahler complex surfaces
    Belgun, FA
    [J]. MATHEMATISCHE ANNALEN, 2000, 317 (01) : 1 - 40