Locally conformally Kahler structures on four-dimensional solvable Lie algebras

被引:6
作者
Angella, Daniele [1 ]
Origlia, Marcos [2 ,3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini, Via Morgagni 67-A, I-50134 Florence, Italy
[2] Katholieke Univ Leuven, Kulak Campus Kortrijk,E Sabbelaan 53, BE-8500 Kortrijk, Belgium
[3] Univ Nacl Cordoba, FaMAF CIEM, RA-5000 Cordoba, Argentina
关键词
locally conformally Kahler; solvable Lie algebra; INVARIANT COMPLEX STRUCTURES; MANIFOLDS; SOLVMANIFOLDS; METRICS; THEOREM;
D O I
10.1515/coma-2020-0001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify and investigate locally conformally Kahler structures on four-dimensional solvable Lie algebras up to linear equivalence. As an application we can produce many examples in higher dimension, here including lcK structures on Oeljeklaus-Toma manifolds, and we also give a geometric interpretation of some of the 4-dimensional structures in our classification.
引用
收藏
页码:1 / 35
页数:35
相关论文
共 40 条
[1]   Homogeneous locally conformally Kahler and Sasaki manifolds [J].
Alekseevsky, D. V. ;
Cortes, V. ;
Hasegawa, K. ;
Kamishima, Y. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (06)
[2]   Locally conformally Kahler solvmanifolds: a survey [J].
Andrada, A. ;
Origlia, M. .
COMPLEX MANIFOLDS, 2019, 6 (01) :65-87
[3]   Lattices in almost abelian Lie groups with locally conformal Kahler or symplectic structures [J].
Andrada, A. ;
Origlia, M. .
MANUSCRIPTA MATHEMATICA, 2018, 155 (3-4) :389-417
[4]   Locally conformally Kahler structures on unimodular Lie groups [J].
Andrada, A. ;
Origlia, M. .
GEOMETRIAE DEDICATA, 2015, 179 (01) :197-216
[5]  
Andrada A., 2020, ASIAN J MATH, V24, P117
[6]  
Angella D., 2019, ANN SC NORM SUPER PI, V5, DOI [10.2422/2036-2145.201708_015, DOI 10.2422/2036-2145.201708_015]
[7]  
[Anonymous], 2006, Contribution to Algebra and Geometry
[8]  
[Anonymous], 2010, PROGR MATH
[9]  
Barberis ML, 2004, J LIE THEORY, V14, P25
[10]   Locally conformally symplectic and kahler geometry [J].
Bazzoni, Giovanni .
EMS SURVEYS IN MATHEMATICAL SCIENCES, 2018, 5 (1-2) :129-154