Iron distribution in silicon after solar cell processing: Synchrotron analysis and predictive modeling

被引:39
作者
Fenning, D. P. [1 ]
Hofstetter, J. [2 ]
Bertoni, M. I. [1 ]
Hudelson, S. [1 ]
Rinio, M. [3 ]
Lelievre, J. F. [4 ]
Lai, B. [5 ]
del Canizo, C. [2 ]
Buonassisi, T. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Univ Politecn Madrid, Inst Energia Solar, E-28040 Madrid, Spain
[3] Fraunhofer Inst Solar Energy Syst ISE, Lab & Serv Ctr, D-45884 Gelsenkirchen, Germany
[4] Ctr Tecnol Silicio Solar CENTESIL, Getafe 28905, Spain
[5] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
关键词
IMPROVEMENT; IMPURITIES; TRANSITION;
D O I
10.1063/1.3575583
中图分类号
O59 [应用物理学];
学科分类号
摘要
The evolution during silicon solar cell processing of performance-limiting iron impurities is investigated with synchrotron-based x-ray fluorescence microscopy. We find that during industrial phosphorus diffusion, bulk precipitate dissolution is incomplete in wafers with high metal content, specifically ingot border material. Postdiffusion low-temperature annealing is not found to alter appreciably the size or spatial distribution of FeSi2 precipitates, although cell efficiency improves due to a decrease in iron interstitial concentration. Gettering simulations successfully model experiment results and suggest the efficacy of high- and low-temperature processing to reduce both precipitated and interstitial iron concentrations, respectively. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3575583]
引用
收藏
页数:3
相关论文
共 19 条
[1]   Metal precipitation at grain boundaries in silicon: Dependence on grain boundary character and dislocation decoration [J].
Buonassisi, T. ;
Istratov, A. A. ;
Pickett, M. D. ;
Marcus, M. A. ;
Ciszek, T. F. ;
Weber, E. R. .
APPLIED PHYSICS LETTERS, 2006, 89 (04)
[2]   PC1D version 5: 32-bit solar cell modeling on personal computers [J].
Clugston, DA ;
Basore, PA .
CONFERENCE RECORD OF THE TWENTY SIXTH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE - 1997, 1997, :207-210
[3]   Effect of iron in silicon feedstock on p- and n-type multicrystalline silicon solar cells [J].
Coletti, G. ;
Kvande, R. ;
Mihailetchi, V. D. ;
Geerligs, L. J. ;
Arnberg, L. ;
Ovrelid, E. J. .
JOURNAL OF APPLIED PHYSICS, 2008, 104 (10)
[4]   IMPURITIES IN SILICON SOLAR-CELLS [J].
DAVIS, JR ;
ROHATGI, A ;
HOPKINS, RH ;
BLAIS, PD ;
RAICHOUDHURY, P ;
MCCORMICK, JR ;
MOLLENKOPF, HC .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1980, 27 (04) :677-687
[5]   Precipitates and hydrogen passivation at crystal defects in n- and p-type multicrystalline silicon [J].
Geerligs, L. J. ;
Komatsu, Y. ;
Roever, I. ;
Wambach, K. ;
Yamaga, I. ;
Saitoh, T. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (09)
[6]  
Hofstetter Jasmin, 2010, Diffusion and Defect Data Part B (Solid State Phenomena), V156-8, P387, DOI 10.4028/www.scientific.net/SSP.156-158.387
[7]   Acceptable contamination levels in solar grade silicon: From feedstock to solar cell [J].
Hofstetter, J. ;
Lelievre, J. F. ;
del Canizo, C. ;
Luque, A. .
MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 :299-304
[8]  
HOFSTETTER J, PROG PHOTOVOLT UNPUB
[9]   Retrograde Melting and Internal Liquid Gettering in Silicon [J].
Hudelson, Steve ;
Newman, Bonna K. ;
Bernardis, Sarah ;
Fenning, David P. ;
Bertoni, Mariana I. ;
Marcus, Matthew A. ;
Fakra, Sirine C. ;
Lai, Barry ;
Buonassisi, Tonio .
ADVANCED MATERIALS, 2010, 22 (35) :3948-+
[10]   COARSENING AND PHASE-TRANSITION OF FESI2 PRECIPITATES IN SI [J].
LIN, XW ;
WASHBURN, J ;
LILIENTALWEBER, Z ;
BERNAS, H .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (09) :4686-4694