Image Restoration for Remote Sensing Overview and toolbox

被引:107
作者
Rasti, Behnood [1 ]
Chang, Yi [2 ]
Dalsasso, Emanuele [3 ]
Denis, Loic [4 ]
Ghamisi, Pedram [1 ,5 ]
机构
[1] Helmholtz Zentrum Dresden Rossendorf, Helmholtz Inst Freiberg Resource Technol Machine, D-09599 Freiberg, Germany
[2] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Sci & Technol Multispectral Informat Proc Lab, Wuhan 1037, Peoples R China
[3] Telecom Paris, Inst Polytech Paris, Informat Proc & Commun Lab LTCI, F-91120 Palaiseau, France
[4] Univ Lyon, Jean Monnet Univ, Natl Ctr Sci Res, Inst Opt Grad Sch,Hubert Curien Lab, F-42000 St Etienne, France
[5] Inst Adv Res Artificial Intelligence, A-1030 Vienna, Austria
关键词
HYPERSPECTRAL IMAGES; LOW-RANK; SPARSE REPRESENTATION; SPECKLE REDUCTION; NOISE-REDUCTION; STRIPE NOISE; MODIS DATA; SAR; WAVELET; DECONVOLUTION;
D O I
10.1109/MGRS.2021.3121761
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remote sensing provides valuable information about objects and areas from a distance in either active (e.g., radar and lidar) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering a true unknown image from a degraded observed one. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques along different paths according to sensor type. © 2013 IEEE.
引用
收藏
页码:201 / 230
页数:30
相关论文
共 164 条
[1]   Subspace-Based Striping Noise Reduction in Hyperspectral Images [J].
Acito, N. ;
Diani, M. ;
Corsini, G. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (04) :1325-1342
[2]   Hyperspectral Image Denoising Using Spatio-Spectral Total Variation [J].
Aggarwal, Hemant Kumar ;
Majumdar, Angshul .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2016, 13 (03) :442-446
[3]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[4]  
[Anonymous], 2013, P 2013 5 WORKSHOP HY
[5]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[6]   A variational approach to removing multiplicative noise [J].
Aubert, Gilles ;
Aujol, Jean-Francois .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2008, 68 (04) :925-946
[7]  
Avagian K, 2019, MEDD C EMBED COMPUT, P155
[8]   Analysis and rejection of systematic disturbances in hyperspectral remotely sensed images of the Earth [J].
Barducci, A ;
Pippi, I .
APPLIED OPTICS, 2001, 40 (09) :1464-1477
[9]   DEBLURRING AND SPARSE UNMIXING OF HYPERSPECTRAL IMAGES USING MULTIPLE POINT SPREAD FUNCTIONS [J].
Berisha, Sebastian ;
Nagy, James G. ;
Plemmons, Robert J. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) :S389-S406
[10]   Multiplicative Noise Removal Using Variable Splitting and Constrained Optimization [J].
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) :1720-1730