Cubic-quintic solitons in the checkerboard potential

被引:34
作者
Driben, Rodislav [1 ]
Malomed, Boris A. [2 ]
Gubeskys, Arthur [2 ]
Zyss, Joseph [1 ]
机构
[1] Ecole Normale Super, Lab Photon Quant & Mol, CNRS, UMR 8537, F-94235 Cachan, France
[2] Tel Aviv Univ, Fac Engn, Sch Elect Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
来源
PHYSICAL REVIEW E | 2007年 / 76卷 / 06期
关键词
D O I
10.1103/PhysRevE.76.066604
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a two-dimensional (2D) model which combines a checkerboard potential, alias the Kronig-Penney (KP) lattice, with the self-focusing cubic and self-defocusing quintic nonlinear terms. The beam-splitting mechanism and soliton multistability are explored in this setting, following the recently considered 1D version of the model. Families of single- and multi-peak solitons (in particular, five- and nine-peak species naturally emerge in the 2D setting) are found in the semi-infinite gap, with both branches of bistable families being robust against perturbations. For single-peak solitons, the variational approximation (VA) is developed, providing for a qualitatively correct description of the transition from monostability to the bistability. 2D solitons found in finite band gaps are unstable. Also constructed are two different species of stable vortex solitons, arranged as four-peak patterns ("oblique" and "straight" ones). Unlike them, compact "crater-shaped" vortices are unstable, transforming themselves into randomly walking fundamental beams.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Gap solitons in Bose-Einstein condensates in linear and nonlinear optical lattices [J].
Abdullaev, Fatkhulla ;
Abdumalikov, Abdulaziz ;
Galimzyanov, Ravil .
PHYSICS LETTERS A, 2007, 367 (1-2) :149-155
[2]   Complete photonic band gap in a two-dimensional chessboard lattice [J].
Agio, M ;
Andreani, LC .
PHYSICAL REVIEW B, 2000, 61 (23) :15519-15522
[3]   OBSERVATION OF SPATIAL OPTICAL SOLITONS IN A NONLINEAR GLASS WAVE-GUIDE [J].
AITCHISON, JS ;
WEINER, AM ;
SILBERBERG, Y ;
OLIVER, MK ;
JACKEL, JL ;
LEAIRD, DE ;
VOGEL, EM ;
SMITH, PWE .
OPTICS LETTERS, 1990, 15 (09) :471-473
[4]   Wannier functions analysis of the nonlinear Schrodinger equation with a periodic potential [J].
Alfimov, GL ;
Kevrekidis, PG ;
Konotop, VV ;
Salerno, M .
PHYSICAL REVIEW E, 2002, 66 (04) :6
[5]   Matter solitons in Bose-Einstein condensates with optical lattices [J].
Alfimov, GL ;
Konotop, VV ;
Salerno, M .
EUROPHYSICS LETTERS, 2002, 58 (01) :7-13
[6]   Multidimensional solitons in periodic potentials [J].
Baizakov, BB ;
Malomed, BA ;
Salerno, M .
EUROPHYSICS LETTERS, 2003, 63 (05) :642-648
[7]   Experimental and theoretical study of higher-order nonlinearities in chalcogenide glasses [J].
Boudebs, G ;
Cherukulappurath, S ;
Leblond, H ;
Troles, J ;
Smektala, F ;
Sanchez, F .
OPTICS COMMUNICATIONS, 2003, 219 (1-6) :427-433
[8]   Theory of nonlinear matter waves in optical lattices [J].
Brazhnyi, VA ;
Konotop, VV .
MODERN PHYSICS LETTERS B, 2004, 18 (14) :627-651
[9]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89
[10]   Embedded solitons: solitary waves in resonance with the linear spectrum [J].
Champneys, AR ;
Malomed, BA ;
Yang, J ;
Kaup, DJ .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 152 :340-354