Diagnostic accuracy of adenosine deaminase for pleural tuberculosis in a low prevalence setting: A machine learning approach within a 7-year prospective multi-center study

被引:10
作者
Garcia-Zamalloa, Alberto [1 ,2 ]
Vicente, Diego [3 ,4 ]
Arnay, Rafael [5 ]
Arrospide, Arantzazu [6 ,7 ,8 ,9 ]
Taboada, Jorge [10 ]
Castilla-Rodriguez, Ivan [5 ,9 ]
Aguirre, Urko [8 ,9 ,11 ]
Mugica, Nekane [12 ]
Aldama, Ladislao [12 ]
Aguinagalde, Borja [13 ]
Jimenez, Montserrat [14 ]
Bikuna, Edurne [14 ]
Begona Basauri, Miren [15 ]
Alonso, Marta [3 ]
Perez-Trallero, Emilio [3 ]
机构
[1] Mendaro Hosp, Internal Med Serv, Osakidetza Basque Hlth Serv, Gipuzkoa, Spain
[2] Spanish Infect Dis Soc, Mycobacterial Infect Study Grp GEIM, Madrid, Spain
[3] Donostia Univ Hosp, Biodonostia Hlth Res Inst, Microbiol Dept, Resp Infect & Antimicrobial Resistance Grp Osakid, Gipuzkoa, Spain
[4] Univ Basque Country, Fac Med, UPV EHU, Donostia San Sebastian, Spain
[5] Univ La Laguna, Dept Ingn Informat & Sistemas, Santa Cruz De Tenerife, Spain
[6] Alto Deba Hosp, Osakidetza Basque Hlth Serv, Gipuzkoa Primary Care Integrated Hlth Org Res Uni, Arrasate Mondragon, Spain
[7] Biodonostia Hlth Res Inst, Epidemiol & Publ Hlth Area, Econ Evaluat Chron Dis Res Grp, Donostia San Sebastian, Spain
[8] Kronikgune Inst Hlth Serv Res, Bizkaia Barakaldo, Spain
[9] Hlth Serv Res Chron Patients Network REDISSEC, Galdakao, Spain
[10] Mendaro Hosp, Osakidetza Basque Hlth Serv, Prevent Med & Western Gipuzkoa Clin Res Unit, Gipuzkoa, Spain
[11] Galdakao Univ Hosp, Osakidetza Basque Hlth Serv, Res Unit, Bizkaia, Spain
[12] Donostia Univ Hosp, Pneumol Serv, Osakidetza Basque Hlth Serv, Gipuzkoa, Spain
[13] Donostia Univ Hosp, Thorac Surg Serv, Osakidetza Basque Hlth Serv, Gipuzkoa, Spain
[14] Basque Govt, Epidemiol Surveillance Unit, Hlth Dept, Gipuzkoa, Spain
[15] Mendaro Hosp, Osakidetza Basque Hlth Serv, Biochem Lab, Gipuzkoa, Spain
关键词
INTERFERON-GAMMA; XPERT MTB/RIF; EFFUSIONS; IMPROVES; BIOPSY; YIELD;
D O I
10.1371/journal.pone.0259203
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
ObjectiveTo analyze the performance of adenosine deaminase in pleural fluid combined with other parameters routinely measured in clinical practice and assisted by machine learning algorithms for the diagnosis of pleural tuberculosis in a low prevalence setting, and secondly, to identify effusions that are non-tuberculous and most likely malignant. Patients and methodsWe prospectively analyzed 230 consecutive patients diagnosed with lymphocytic exudative pleural effusion from March 2013 to June 2020. Diagnosis according to the composite reference standard was achieved in all cases. Pre-test probability of pleural tuberculosis was 3.8% throughout the study period. Parameters included were: levels of adenosine deaminase, pH, glucose, proteins, and lactate dehydrogenase, red and white cell counts and lymphocyte percentage in pleural fluid, as well as age. We tested six different machine learning-based classifiers to categorize the patients. Two different classifications were performed: a) tuberculous/non-tuberculous and b) tuberculous/malignant/other. ResultsOut of a total of 230 patients with pleural effusion included in the study, 124 were diagnosed with malignant effusion and 44 with pleural tuberculosis, while 62 were given other diagnoses. In the tuberculous/non-tuberculous classification, and taking into account the validation predictions, the support vector machine yielded the best result: an AUC of 0.98, accuracy of 97%, sensitivity of 91%, and specificity of 98%, whilst in the tuberculous/malignant/other classification, this type of classifier yielded an overall accuracy of 80%. With this three-class classifier, the same sensitivity and specificity was achieved in the tuberculous/other classification, but it also allowed the correct classification of 90% of malignant cases. ConclusionThe level of adenosine deaminase in pleural fluid together with cell count, other routine biochemical parameters and age, combined with a machine-learning approach, is suitable for the diagnosis of pleural tuberculosis in a low prevalence scenario. Secondly, non-tuberculous effusions that are suspected to be malignant may also be identified with adequate accuracy.
引用
收藏
页数:22
相关论文
共 70 条
[1]   Adenosine deaminase for diagnosis of tuberculous pleural effusion: A systematic review and meta-analysis [J].
Aggarwal, Ashutosh Nath ;
Agarwal, Ritesh ;
Sehgal, Inderpaul Singh ;
Dhooria, Sahajal .
PLOS ONE, 2019, 14 (03)
[2]  
[Anonymous], 2020, GLOBAL TUBERCULOSIS
[3]   Tuberculous pleural effusion: diagnosis & management [J].
Antonangelo, Leila ;
Faria, Caroline S. ;
Sales, Roberta K. .
EXPERT REVIEW OF RESPIRATORY MEDICINE, 2019, 13 (08) :747-759
[4]   Differentiating between tuberculosis-related and lymphoma-related lymphocytic pleural effusions by measuring clinical and laboratory variables: Is it possible? [J].
Antonangelo, Leila ;
Vargas, Francisco Suso ;
Genofre, Eduardo Flenrique ;
Neves de Oliveira, Caroline Mans ;
Teixeira, Lisete Ribeiro ;
Barbosa de Sales, Roberta Karla .
JORNAL BRASILEIRO DE PNEUMOLOGIA, 2012, 38 (02) :181-187
[5]   Pleural Fluid Adenosine Deaminase (Pfada) in the Diagnosis of Tuberculous Effusions in a Low Incidence Population [J].
Arnold, David T. ;
Bhatnagar, Rahul ;
Fairbanks, Lynette D. ;
Zahan-Evans, Natalie ;
Clive, Amelia O. ;
Morley, Anna J. ;
Medford, Andrew R. L. ;
Maskell, Nicholas A. .
PLOS ONE, 2015, 10 (02)
[6]   Adenosine Deaminase Activity Is a Sensitive Marker for the Diagnosis of Tuberculous Pleuritis in Patients with Very Low CD4 Counts [J].
Baba, Kamaldeen ;
Hoosen, Anwar A. ;
Langeland, Nina ;
Dyrhol-Riise, Anne M. .
PLOS ONE, 2008, 3 (07)
[7]  
Bishop C. M., 2006, Pattern recognition and machine learning
[8]  
Blakiston M, 2018, J CLIN MICROBIOL, V56, DOI [10.1128/JCM.00258-18, 10.1128/jcm.00258-18]
[9]  
Boyd Kendrick, 2013, Machine Learning and Knowledge Discovery in Databases. European Conference, ECML PKDD 2013. Proceedings: LNCS 8190, P451, DOI 10.1007/978-3-642-40994-3_29
[10]   The use of the area under the roc curve in the evaluation of machine learning algorithms [J].
Bradley, AP .
PATTERN RECOGNITION, 1997, 30 (07) :1145-1159