The effect of submicron grain size on thermal stability and mechanical properties of high-entropy carbide ceramics

被引:135
作者
Wang, Fei [1 ]
Zhang, Xiang [1 ]
Yan, Xueliang [1 ]
Lu, Yongfeng [2 ]
Nastasi, Michael [1 ,3 ,4 ]
Chen, Yan [5 ]
Cui, Bai [1 ,4 ]
机构
[1] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
[2] Univ Nebraska, Dept Elect & Comp Engn, Lincoln, NE USA
[3] Univ Nebraska, Nebraska Ctr Energy Sci Res, Lincoln, NE USA
[4] Univ Nebraska, Nebraska Ctr Mat & Nanosci, Lincoln, NE USA
[5] Oak Ridge Natl Lab, Neutron Scattering Div, Oak Ridge, TN USA
基金
美国国家科学基金会;
关键词
grain size; high-entropy ceramics; mechanical properties; spark plasma sintering; thermal stability; TETRAGONAL ZIRCONIA; FRACTURE-TOUGHNESS; GROWTH; FABRICATION; DIFFUSION; ALLOYS;
D O I
10.1111/jace.17103
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
(Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramics (HEC) with a submicron grain size of 400 to 600 nm were fabricated by spark plasma sintering using a two-step sintering process. Both X-ray and neutron diffractions confirmed the formation of single-phase with rock salt structure in the as-fabricated (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C samples. The effect of submicron grain size on the thermal stability and mechanical properties of HEC was investigated. The grain growth kinetics in the fine-grained HEC was small at 1300 and 1600 degrees C, suggesting high thermal stability that was possibly related to the compositional complexity and sluggish diffusion in HEC. Compared to the coarse-grain HEC with a grain size of 16.5 mu m, the bending strength and fracture toughness of fine-grained HEC were 25% and 20% higher respectively. The improvement of mechanical properties in fine-grained HEC may be attributed to micromechanistic mechanisms such as crack deflection.
引用
收藏
页码:4463 / 4472
页数:10
相关论文
共 41 条
[1]  
Abrams H., 1971, Metallography, V4, P59, DOI 10.1016/0026-0800(71)90005-X
[2]   First In Situ Lattice Strains Measurements Under Load at VULCAN [J].
An, Ke ;
Skorpenske, Harley D. ;
Stoica, Alexandru D. ;
Ma, Dong ;
Wang, Xun-Li ;
Cakmak, Ercan .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (01) :95-99
[3]  
[Anonymous], 2004, LOS ALAMOS NATL LAB
[4]   On the diffusion in high-entropy alloys [J].
Beke, D. L. ;
Erdelyi, G. .
MATERIALS LETTERS, 2016, 164 :111-113
[5]   Fracture toughness of nanocrystalline tetragonal zirconia with low yttria content [J].
Bravo-Leon, A ;
Morikawa, Y ;
Kawahara, M ;
Mayo, MJ .
ACTA MATERIALIA, 2002, 50 (18) :4555-4562
[6]   Processing and Properties of High-Entropy Ultra-High Temperature Carbides [J].
Castle, Elinor ;
Csanadi, Tamas ;
Grasso, Salvatore ;
Dusza, Jan ;
Reece, Michael .
SCIENTIFIC REPORTS, 2018, 8
[7]   Sintering dense nanocrystalline ceramics without final-stage grain growth [J].
Chen, IW ;
Wang, XH .
NATURE, 2000, 404 (6774) :168-171
[8]   High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC [J].
Demirskyi, D. ;
Borodianska, H. ;
Suzuki, T. S. ;
Sakka, Y. ;
Yoshimi, K. ;
Vasylkiv, O. .
SCRIPTA MATERIALIA, 2019, 164 :12-16
[9]   GRIFFITH FRACTURE EQUATION - EXPERIMENTAL TEST [J].
DOREMUS, RH ;
PAVELCHEK, EK .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (09) :4096-4097
[10]   Synthesis of single-phase high-entropy carbide powders [J].
Feng, Lun ;
Fahrenholtz, William G. ;
Hilmas, Gregory E. ;
Zhou, Yue .
SCRIPTA MATERIALIA, 2019, 162 :90-93