Interplay of inhibition and multiplexing: Largest eigenvalue statistics

被引:5
作者
Ghosh, Saptarshi [1 ]
Dwivedi, Sanjiv K. [1 ]
Ivanchenko, Mikhail V. [2 ]
Jalan, Sarika [1 ]
机构
[1] Indian Inst Technol Indore Simrol, Discipline Phys, Complex Syst Lab, Indore 453552, Madhya Pradesh, India
[2] Lobachevsky State Univ Nizhny Novgorod, Dept Appl Math, Novgorod, Russia
关键词
RANDOM GRAPHS; NETWORKS;
D O I
10.1209/0295-5075/115/10001
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The largest eigenvalue of a network provides understanding to various dynamical as well as stability properties of the underlying system. We investigate the interplay of inhibition and multiplexing on the largest eigenvalue statistics of networks. Using numerical experiments, we demonstrate that the presence of the inhibitory coupling may lead to a behaviour of the largest eigenvalue statistics of multiplex networks very different from that of isolated networks depending upon the network architecture of the individual layer. We demonstrate that there is a transition from the Weibull to the Gumbel or to the Frechet distribution as networks are multiplexed. Furthermore, for denser networks, there is a convergence to the Gumbel distribution as network size increases indicating higher stability of larger systems. Copyright (C) EPLA, 2016
引用
收藏
页数:7
相关论文
共 24 条
  • [1] Synchronization of Interconnected Networks: The Role of Connector Nodes
    Aguirre, J.
    Sevilla-Escoboza, R.
    Gutierrez, R.
    Papo, D.
    Buldu, J. M.
    [J]. PHYSICAL REVIEW LETTERS, 2014, 112 (24)
  • [2] Statistical mechanics of complex networks
    Albert, R
    Barabási, AL
    [J]. REVIEWS OF MODERN PHYSICS, 2002, 74 (01) : 47 - 97
  • [3] The structure and dynamics of multilayer networks
    Boccaletti, S.
    Bianconi, G.
    Criado, R.
    del Genio, C. I.
    Gomez-Gardenes, J.
    Romance, M.
    Sendina-Nadal, I.
    Wang, Z.
    Zanin, M.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01): : 1 - 122
  • [4] Cellular and network mechanisms of slow oscillatory activity (<1 Hz) and wave propagations in a cortical network model
    Compte, A
    Sanchez-Vives, MV
    McCormick, DA
    Wang, XJ
    [J]. JOURNAL OF NEUROPHYSIOLOGY, 2003, 89 (05) : 2707 - 2725
  • [5] Level density of a bose gas and extreme value statistics
    Comtet, A.
    Leboeuf, P.
    Majumdar, Satya N.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (07)
  • [6] Dwivedi S., 2016, ARXIV160407603
  • [7] Extreme-value statistics of networks with inhibitory and excitatory couplings
    Dwivedi, Sanjiv Kumar
    Jalan, Sarika
    [J]. PHYSICAL REVIEW E, 2013, 87 (04):
  • [8] Condensation and extreme value statistics
    Evans, Martin R.
    Majumdar, Satya N.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
  • [9] Spectra of "real-world" graphs:: Beyond the semicircle law -: art. no. 026704
    Farkas, IJ
    Derényi, I
    Barabási, AL
    Vicsek, T
    [J]. PHYSICAL REVIEW E, 2001, 64 (02) : 12 - 267041
  • [10] THE EIGENVALUES OF RANDOM SYMMETRIC-MATRICES
    FUREDI, Z
    KOMLOS, J
    [J]. COMBINATORICA, 1981, 1 (03) : 233 - 241