Real hypersurfaces in the complex quadric with Reeb invariant Ricci tensor

被引:3
作者
Suh, Young Jin [1 ,2 ]
Hwang, Doo Hyun [1 ,2 ]
Woo, Changhwa [3 ]
机构
[1] Kyungpook Natl Univ, Coll Nat Sci, Dept Math, Daegu 41566, South Korea
[2] Res Inst Real & Complex Manifolds, Daegu 41566, South Korea
[3] Woosuk Univ, Coll Nat Sci, Dept Math Educ, Wonju 55338, Jeonbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Reeb invariant Ricci tensor; (sic)-isotropic; (sic)-principal; Kahler structure; Complex conjugation; Complex quadric; HYPERBOLIC 2-PLANE GRASSMANNIANS; PROJECTIVE-SPACE; SUBMANIFOLDS;
D O I
10.1016/j.geomphys.2017.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of Reeb invariant Ricci tensor for real hypersurfaces in the complex quadric Q(m) = SOm+2/SOmSO2. The Reeb invariant Ricci tensor implies that the unit normal vector field N becomes (sic)-principal or (sic)-isotropic. Then according to each case, we give a complete classification of real hypersurfaces in Q(m) = SOm+2/SOmSO2 with Reeb invariant Ricci tensor. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 105
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1987, Saitama Math. J.
[2]   Commutativity of Cho and structure Jacobi operators of a real hypersurface in a complex projective space [J].
de Dios Perez, Juan .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (06) :1781-1794
[3]   Semi-parallel symmetric operators for Hopf hypersurfaces in complex two-plane Grassmannians [J].
Hwang, Doo Hyun ;
Lee, Hyunjin ;
Woo, Changhwa .
MONATSHEFTE FUR MATHEMATIK, 2015, 177 (04) :539-550
[5]   Totally geodesic submanifolds of the complex quadric [J].
Klein, Sebastian .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (01) :79-96
[6]  
Kobayashi S, 1996, Foundations of differential geometry, V2
[7]  
Pérez JD, 2001, ACTA MATH HUNG, V91, P343
[8]  
Perez JDD, 1997, DIFFER GEOM APPL, V7, P211
[9]  
Reckziegel H., 1996, Geometry and Topology of Submanifolds, VIII (Brussels 1995/Nordfjordeid, 1995), P302
[10]   DIFFERENTIAL GEOMETRY OF COMPLEX HYPERSURFACES [J].
SMYTH, B .
ANNALS OF MATHEMATICS, 1967, 85 (02) :246-&