Additive Manufacturing as a Method to Design and Optimize Bioinspired Structures

被引:209
作者
Velasco-Hogan, Audrey [1 ]
Xu, Jun [2 ]
Meyers, Marc A. [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] Beihang Univ, Sch Transportat Sci & Engn, AVRC, Dept Automot Engn, Beijing 100191, Peoples R China
关键词
3D printing; additive manufacturing; bioinspired design; biological materials; biomimetics; MECHANICAL-PROPERTIES; BIOLOGICAL-MATERIALS; 2-PHOTON POLYMERIZATION; NATURAL MATERIALS; MATERIALS SCIENCE; CONTACT SHAPE; 3D; BONE; COMPOSITES; BEHAVIOR;
D O I
10.1002/adma.201800940
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Additive manufacturing (AM) is a current technology undergoing rapid development that is utilized in a wide variety of applications. In the field of biological and bioinspired materials, additive manufacturing is being used to generate intricate prototypes to expand our understanding of the fundamental structure-property relationships that govern nature's spectacular mechanical performance. Herein, recent advances in the use of AM for improving the understanding of the structure-property relationship in biological materials and for the production of bioinspired materials are reviewed. There are four essential components to this work: a) extracting defining characteristics of biological designs, b) designing 3D-printed prototypes, c) performing mechanical testing on 3D-printed prototypes to understand fundamental mechanisms at hand, and d) optimizing design for tailorable performance. It is intended to highlight how the various types of additive manufacturing methods are utilized, to unravel novel discoveries in the field of biological materials. Since AM processing techniques have surpassed antiquated limitations, especially with respect to spatial scales, there has been a surge in their demand as an integral tool for research. In conclusion, current challenges and the technical perspective for further development of bioinspired materials using AM are discussed.
引用
收藏
页数:26
相关论文
共 116 条
[1]   The red-eared slider turtle carapace under fatigue loading: The effect of rib-suture arrangement [J].
Achrai, Ben ;
Wagner, H. Daniel .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2015, 53 :128-133
[2]   Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes [J].
Ahn, Bok Y. ;
Duoss, Eric B. ;
Motala, Michael J. ;
Guo, Xiaoying ;
Park, Sang-Il ;
Xiong, Yujie ;
Yoon, Jongseung ;
Nuzzo, Ralph G. ;
Rogers, John A. ;
Lewis, Jennifer A. .
SCIENCE, 2009, 323 (5921) :1590-1593
[3]   Skeleton of Euplectella sp.:: Structural hierarchy from the nanoscale to the macroscale [J].
Aizenberg, J ;
Weaver, JC ;
Thanawala, MS ;
Sundar, VC ;
Morse, DE ;
Fratzl, P .
SCIENCE, 2005, 309 (5732) :275-278
[4]   Design and 3D Printing of Scaffolds and Tissues [J].
An, Jia ;
Teoh, Joanne Ee Mei ;
Suntornnond, Ratima ;
Chua, Chee Kai .
ENGINEERING, 2015, 1 (02) :261-268
[5]   Biological and artificial attachment devices: Lessons for materials scientists from flies and geckos [J].
Arzt, Eduard .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2006, 26 (08) :1245-1250
[6]   THE MECHANICAL-PROPERTIES OF NATURAL MATERIALS .1. MATERIAL PROPERTY CHARTS [J].
ASHBY, MF ;
GIBSON, LJ ;
WEGST, U ;
OLIVE, R .
PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 450 (1938) :123-140
[7]  
Barclift M., 2012, INT SOLID FREEFORM F, P876, DOI DOI 10.1017/CBO9781107415324.004
[8]   Direct-Write Assembly of 3D Hydrogel Scaffolds for Guided Cell Growth [J].
Barry, Robert A., III ;
Shepherd, Robert F. ;
Hanson, Jennifer N. ;
Nuzzo, Ralph G. ;
Wiltzius, Pierre ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2009, 21 (23) :2407-+
[9]   Toughness amplification in natural composites [J].
Barthelat, Francois ;
Rabiei, Reza .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :829-840
[10]   Mechanics of composite elasmoid fish scale assemblies and their bioinspired analogues [J].
Browning, Ashley ;
Ortiz, Christine ;
Boyce, Mary C. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2013, 19 :75-86