Machine learning potentials for extended systems: a perspective

被引:131
作者
Behler, Joerg [1 ]
Csanyi, Gabor [2 ]
机构
[1] Univ Gottingen, Inst Phys Chem, Tammannstr 6, D-37077 Gottingen, Germany
[2] Univ Cambridge, Engn Lab, Cambridge CB2 1PZ, England
关键词
ENERGY SURFACES; NEURAL-NETWORKS; FORCE-FIELD; CHARGE; REPRESENTATION; SIMULATIONS; GENERATION; MOLECULES; CHEMISTRY; MODELS;
D O I
10.1140/epjb/s10051-021-00156-1
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In the past two and a half decades machine learning potentials have evolved from a special purpose solution to a broadly applicable tool for large-scale atomistic simulations. By combining the efficiency of empirical potentials and force fields with an accuracy close to first-principles calculations they now enable computer simulations of a wide range of molecules and materials. In this perspective, we summarize the present status of these new types of models for extended systems, which are increasingly used for materials modelling. There are several approaches, but they all have in common that they exploit the locality of atomic properties in some form. Long-range interactions, most prominently electrostatic interactions, can also be included even for systems in which non-local charge transfer leads to an electronic structure that depends globally on all atomic positions. Remaining challenges and limitations of current approaches are discussed.
引用
收藏
页数:11
相关论文
共 88 条
[1]  
Anderson B., 2019, ARXIV190604015V3
[2]   Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species [J].
Artrith, Nongnuch ;
Urban, Alexander ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2017, 96 (01)
[3]   High-dimensional neural network potentials for metal surfaces: A prototype study for copper [J].
Artrith, Nongnuch ;
Behler, Joerg .
PHYSICAL REVIEW B, 2012, 85 (04)
[4]   High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide [J].
Artrith, Nongnuch ;
Morawietz, Tobias ;
Behler, Joerg .
PHYSICAL REVIEW B, 2011, 83 (15)
[5]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[6]   Machine learning unifies the modeling of materials and molecules [J].
Bartok, Albert P. ;
De, Sandip ;
Poelking, Carl ;
Bernstein, Noam ;
Kermode, James R. ;
Csanyi, Gabor ;
Ceriotti, Michele .
SCIENCE ADVANCES, 2017, 3 (12)
[7]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[8]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[9]  
Batzner S., 2021, ARXIV
[10]   Generalized neural-network representation of high-dimensional potential-energy surfaces [J].
Behler, Joerg ;
Parrinello, Michele .
PHYSICAL REVIEW LETTERS, 2007, 98 (14)