Leaching of metals from spent fluid catalytic cracking catalyst using Acidothiobacillus ferrooxidans and comparing its leaching efficiency with organic and inorganic acids

被引:17
作者
Mouna, H. M. [1 ]
Baral, Saroj Sundar [1 ]
Mohapatra, Priyabrat [2 ]
机构
[1] BITS Pilani, Dept Chem Engn, KK Birla Goa Campus, Sancoale 403726, Goa, India
[2] CV Raman Global Univ, Dept Chem, Bhubaneswar 752054, Odisha, India
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2021年 / 9卷 / 05期
关键词
A; ferrooxidans; SFCCC; Metals; Bioleaching; Pulp density; RARE-EARTH-ELEMENTS; COAL FLY-ASH; REFINERY CATALYSTS; ASPERGILLUS-NIGER; RED MUD; RECOVERY; WASTE; ALUMINUM; BACTERIA; ENHANCEMENT;
D O I
10.1016/j.jece.2021.105522
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bioleaching is an eco-friendly alternative for the extraction of metals from the spent fluid catalytic cracking catalyst (SFCCC). Acidothiobacillus ferrooxidans (A. ferrooxidans) are the most widely reported bacteria in leaching but remained unexplored for SFCCC till date. The present study proposes a cleaner, environmentally friendly process to leach metals from SFCCC by A. ferrooxidans. Batch bioleaching of metals was carried out with unadapted and adapted A. ferrooxidans. Experiments were performed by varying the pulp density (PD) (1-20%) at two different initial Fe(II) concentrations i.e. 2 g/L [M2Fe(II)] and 8.84 g/L [M8.84Fe(II)]. The results showed that adapted A. ferrooxidans leached out metals better than unadapted ones. Even though the loss of Iron to Jarosite formation was higher in M8.84Fe(II) than in M2Fe(II), leaching remained higher in M8.84Fe(II). Jarosite formation was minimized by maintaining the pH of the medium to 2 +/- 0.1. Maximum leaching efficiency was observed at 1% PD. At this concentration. A. ferrooxidans growth was triggered which increased the production of Fe(III), thereby increasing leaching efficiency. Increase in PD led to a decrease in metal leaching efficiency. The maximum leaching observed by A. ferrooxidans is Al (35%), Ti (14%), Ni (27%) and V (56.5%). The amount of Al leached (70 mg/gm of SFCCC) suggests SFCCC be the potential secondary source of Al compared to popular secondary sources such as red mud and other spent catalysts. Al and V were better leached by A. ferrooxidans while organic acids were more suitable to extract Ti and Ni from SFCCC.
引用
收藏
页数:13
相关论文
共 65 条
[1]   A review of metal recovery from spent petroleum catalysts and ash [J].
Akcil, Ata ;
Veglio, Francesco ;
Ferella, Francesco ;
Okudan, Mediha Demet ;
Tuncuk, Aysenur .
WASTE MANAGEMENT, 2015, 45 :420-433
[2]   Sustainable management of spent fluid catalytic cracking catalyst from a circular economy approach [J].
Alonso-Farinas, Bernabe ;
Rodriguez-Galan, Monica ;
Arenas, Celia ;
Arroyo Torralvo, Fatima ;
Leiva, Carlos .
WASTE MANAGEMENT, 2020, 110 :10-19
[3]   Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions [J].
Amiri, F. ;
Mousavi, S. M. ;
Yaghmaei, S. ;
Barati, M. .
BIOCHEMICAL ENGINEERING JOURNAL, 2012, 67 :208-217
[4]   Recovery of metals from spent refinery hydrocracking catalyst using adapted Aspergillus niger [J].
Amiri, F. ;
Yaghmaei, S. ;
Mousavi, S. M. ;
Sheibani, S. .
HYDROMETALLURGY, 2011, 109 (1-2) :65-71
[5]   Enhanced bioleaching of metals from black shale using ultrasonics [J].
Anjum, Fozia ;
Bhatti, Haq Nawaz ;
Ghauri, Muhammad Afzal .
HYDROMETALLURGY, 2010, 100 (3-4) :122-128
[6]   Bioleaching of spent refinery catalysts: A review [J].
Asghari, I. ;
Mousavi, S. M. ;
Amiri, F. ;
Tavassoli, S. .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2013, 19 (04) :1069-1081
[7]   Bioleaching of spent fluid catalytic cracking catalyst using Aspergillus niger [J].
Aung, KMM ;
Ting, YP .
JOURNAL OF BIOTECHNOLOGY, 2005, 116 (02) :159-170
[8]   THE OXIDATION OF GALENA USING THIOBACILLUS-FERROOXIDANS [J].
BANG, SS ;
DESHPANDE, SS ;
HAN, KN .
HYDROMETALLURGY, 1995, 37 (02) :181-192
[9]   Metal recovery from spent refinery catalysts by means of biotechnological strategies [J].
Beolchini, F. ;
Fonti, V. ;
Ferella, F. ;
Veglio, F. .
JOURNAL OF HAZARDOUS MATERIALS, 2010, 178 (1-3) :529-534
[10]   Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking [J].
Bharadwaj, Abhilasha ;
Ting, Yen-Peng .
BIORESOURCE TECHNOLOGY, 2013, 130 :673-680