Quantum Dots for Single- and Entangled-Photon Emitters

被引:43
作者
Bimberg, Dieter [1 ]
Stock, Erik [1 ]
Lochmann, Anatol [1 ]
Schliwa, Andrei [1 ]
Toefflinger, Jan A. [1 ]
Unrau, Waldemar [1 ]
Muennix, Michael [1 ]
Rodt, Sven [1 ]
Haisler, Vladimir A. [2 ]
Toropov, Aleksandr I. [2 ]
Bakarov, Askhat [2 ]
Kalagin, Aleksandr K. [2 ]
机构
[1] Tech Univ Berlin, Inst Festkorperphys, D-1000 Berlin, Germany
[2] Russian Acad Sci, Inst Semicond Phys, Novosibirsk 630090, Russia
来源
IEEE PHOTONICS JOURNAL | 2009年 / 1卷 / 01期
关键词
Quantum dots (QDs); single-photon emission; entangled photon pairs; OPTICAL-PROPERTIES; KEY DISTRIBUTION; SURFACE; TRANSITIONS; RELAXATION;
D O I
10.1109/JPHOT.2009.2025329
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The efficient generation of polarized single or entangled photons is a crucial requirement for the implementation of quantum key distribution (QKD) systems. Self-organized semiconductor quantum dots (QDs) are capable of emitting one polarized photon or an entangled photon pair at a time using appropriate electrical current injection. We realized a highly efficient single-photon source (SPS) based on well-established semiconductor technology: In a pin structure, a single electron and a single hole are funneled into a single InAs QD using a submicron AlOx current aperture. Efficient radiative recombination leads to emission of single polarized photons with an all-time record purity of the spectrum. Non-classicality of the emitted light without using additional spectral filtering is demonstrated. The out-coupling efficiency and the emission rate are increased by embedding the SPS into a micro-cavity. The design of the micro-cavity is based on detailed modeling to optimize its performance. The resulting resonant single-QD diode is driven at a repetition rate of 1 GHz, exhibiting a second-order correlation function of g((2)) (0) = 0. Eventually, QDs grown on (111)-oriented substrates are proposed as a source of entangled photon pairs. Intrinsic symmetry-lowering effects leading to the splitting of the exciton bright states are shown to be absent for this substrate orientation. As a result, the XX --> X --> 0 recombination cascade of a QD can be used for the generation of entangled photons without further tuning of the fine-structure splitting via QD size and/or shape.
引用
收藏
页码:58 / 68
页数:11
相关论文
共 51 条
[11]   Quantum key distribution with 1.25 Gbps clock synchronization [J].
Bienfang, JC ;
Gross, AJ ;
Mink, A ;
Hershman, BJ ;
Nakassis, A ;
Tang, X ;
Lu, R ;
Su, DH ;
Clark, CW ;
Williams, CJ ;
Hagley, EW ;
Wen, J .
OPTICS EXPRESS, 2004, 12 (09) :2011-2016
[12]   Quantum dot based nanophotonics and nanoelectronics [J].
Bimberg, D. .
ELECTRONICS LETTERS, 2008, 44 (03) :168-170
[13]   Full configuration interaction calculations of electron-hole correlation effects in strain-induced quantum dots [J].
Braskèn, M ;
Lindberg, M ;
Sundholm, D ;
Olsen, J .
PHYSICAL REVIEW B, 2000, 61 (11) :7652-7655
[14]  
BROWN RH, 1956, NATURE, V178, P1046
[15]   Single-photon-emitting diode at liquid nitrogen temperature [J].
Dou, X. M. ;
Chang, X. Y. ;
Sun, B. Q. ;
Xiong, Y. H. ;
Niu, Z. C. ;
Huang, S. S. ;
Ni, H. Q. ;
Du, Y. ;
Xia, J. B. .
APPLIED PHYSICS LETTERS, 2008, 93 (10)
[16]   Electrically addressing a single self-assembled quantum dot [J].
Ellis, DJP ;
Bennett, AJ ;
Shields, AJ ;
Atkinson, P ;
Ritchie, DA .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[17]   Scaling quantum-dot light-emitting diodes to submicrometer sizes [J].
Fiore, A ;
Chen, JX ;
Ilegems, M .
APPLIED PHYSICS LETTERS, 2002, 81 (10) :1756-1758
[18]   Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity [J].
Gerard, JM ;
Sermage, B ;
Gayral, B ;
Legrand, B ;
Costard, E ;
Thierry-Mieg, V .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1110-1113
[19]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[20]   A short wavelength gigahertz clocked fiber-optic quantum key distribution system [J].
Gordon, KJ ;
Fernandez, V ;
Townsend, PD ;
Buller, GS .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2004, 40 (07) :900-908