Weak convergence of metropolis algorithms for non-IID target distributions

被引:57
作者
Bedard, Mylene [1 ]
机构
[1] Univ Warwick, Dept Stat, Coventry CV4 7AL, W Midlands, England
关键词
metropolis algorithm; weak convergence; optimal scaling; diffusion; Markov chain Monte Carlo;
D O I
10.1214/105051607000000096
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we shall optimize the efficiency of Metropolis algorithms for multidimensional target distributions with scaling terms possibly depending on the dimension. We propose a method for determining the appropriate form for the scaling of the proposal distribution as a function of the dimension, which leads to the proof of an asymptotic diffusion theorem. We show that when there does not exist any component with a scaling term significantly smaller than the others, the asymptotically optimal acceptance rate is the well-known 0.234.
引用
收藏
页码:1222 / 1244
页数:23
相关论文
共 15 条
[1]  
[Anonymous], 2004, Probability Surveys, DOI 10.1214/154957804100000024
[2]  
BEDARAD M, 2006, EFFICIENT SAMPLING U
[3]  
BEDARD M, 2006, OPTIMAL ACCEPTANCE R
[4]   BAYESIAN COMPUTATION AND STOCHASTIC-SYSTEMS [J].
BESAG, J ;
GREEN, P ;
HIGDON, D ;
MENGERSEN, K .
STATISTICAL SCIENCE, 1995, 10 (01) :3-41
[5]  
BESAG J, 1993, J ROY STAT SOC B MET, V55, P25
[6]   From metropolis to diffusions: Gibbs states and optimal scaling [J].
Breyer, LA ;
Roberts, GO .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2000, 90 (02) :181-206
[7]   Optimal scaling of mala for nonlinear regression [J].
Breyer, LA ;
Piccioni, M ;
Scarlatti, S .
ANNALS OF APPLIED PROBABILITY, 2004, 14 (03) :1479-1505
[8]  
Ethier S.N., 1986, MARKOV PROCESSES CHA, DOI 10.1002/9780470316658
[9]  
HASTINGS WK, 1970, BIOMETRIKA, V57, P97, DOI 10.1093/biomet/57.1.97
[10]   EQUATION OF STATE CALCULATIONS BY FAST COMPUTING MACHINES [J].
METROPOLIS, N ;
ROSENBLUTH, AW ;
ROSENBLUTH, MN ;
TELLER, AH ;
TELLER, E .
JOURNAL OF CHEMICAL PHYSICS, 1953, 21 (06) :1087-1092