Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid

被引:174
作者
Raab, Andreas M. [1 ,2 ]
Gebhardt, Gabi [3 ]
Bolotina, Natalia [2 ]
Weuster-Botz, Dirk [3 ]
Lang, Christine [1 ,2 ]
机构
[1] Berlin Univ Technol, Inst Biotechnol, Dept Genet & Microbiol, D-13355 Berlin, Germany
[2] ORGANOBALANCE GmbH, D-13355 Berlin, Germany
[3] Tech Univ Munich, Inst Biochem Engn, D-85748 Garching, Germany
关键词
Yeast; Saccharomyces cerevisiae; Succinic acid; Metabolic engineering; Production; MANNHEIMIA-SUCCINICIPRODUCENS LPK7; ESCHERICHIA-COLI; ISOCITRATE DEHYDROGENASE; GENE DISRUPTION; SAKE YEAST; CORYNEBACTERIUM-GLUTAMICUM; UBIQUINONE OXIDOREDUCTASE; ORGANIC-ACIDS; BOVINE RUMEN; EXPRESSION;
D O I
10.1016/j.ymben.2010.08.005
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The production of bio-based succinic acid is receiving great attention, and several predominantly prokaryotic organisms have been evaluated for this purpose. In this study we report on the suitability of the highly acid- and osmotolerant yeast Saccharomyces cerevisiae as a succinic acid production host. We implemented a metabolic engineering strategy for the oxidative production of succinic acid in yeast by deletion of the genes SDH1, SDH2, IDH1 and IDP1. The engineered strains harbor a TCA cycle that is completely interrupted after the intermediates isocitrate and succinate. The strains show no serious growth constraints on glucose. In glucose-grown shake flask cultures, the quadruple deletion strain Delta sdh1 Delta sdh2 Delta idh1 Delta idp1 produces succinic acid at a titer of 3.62 gL(-1) (factor 4.8 compared to wild-type) at a yield of 0.11 mol (mol glucose)(-1). Succinic acid is not accumulated intracellularly. This makes the yeast S. cerevisiae a suitable and promising candidate for the biotechnological production of succinic acid on an industrial scale. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:518 / 525
页数:8
相关论文
共 62 条
[1]   Properties of yeast Saccharomyces cerevisiae plasma membrane dicarboxylate transporter [J].
Aliverdieva, D. A. ;
Mamaev, D. V. ;
Bondarenko, D. I. ;
Sholtz, K. F. .
BIOCHEMISTRY-MOSCOW, 2006, 71 (10) :1161-1169
[2]   Isolation of sake yeast strains possessing various levels of succinate- and/or malate-producing abilities by gene disruption or mutation [J].
Arikawa, Y ;
Kobayashi, M ;
Kodaira, R ;
Shimosaka, M ;
Muratsubaki, H ;
Enomoto, K ;
Okazaki, M .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 87 (03) :333-339
[3]   Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae [J].
Arikawa, Y ;
Kuroyanagi, T ;
Shimosaka, M ;
Muratsubaki, H ;
Enomoto, K ;
Kodaira, R ;
Okazaki, M .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 87 (01) :28-36
[4]   Effect of NAD+-dependent isocitrate dehydrogenase gene (IDH1, IDH2) disruption of sake yeast on organic acid composition in sake mash [J].
Asano, T ;
Kurose, N ;
Hiraoka, N ;
Kawakita, S .
JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 1999, 88 (03) :258-263
[5]  
Behnam JI, 2006, BIOCHEM J, V394, P409, DOI 10.1042/BJ20051397
[6]   Characterization of Schizosaccharomyces pombe malate permease by expression in Saccharomyces cerevisiae [J].
Camarasa, C ;
Bidard, F ;
Bony, M ;
Barre, P ;
Dequin, S .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (09) :4144-4151
[7]   Increased acid tolerance of Escherichia coli O157:H7 as affected by acid adaptation time and conditions of acid challenge [J].
Cheng, HY ;
Yu, RC ;
Chou, CC .
FOOD RESEARCH INTERNATIONAL, 2003, 36 (01) :49-56
[8]   Global transcriptional response of Saccharomyces cerevisiae to the deletion of SDH3 [J].
Cimini, Donatella ;
Patil, Kiran R. ;
Schiraldi, Chiara ;
Nielsen, Jens .
BMC SYSTEMS BIOLOGY, 2009, 3
[9]  
CORNILS B, 2002, DICARBOBOXYLIC ACIDS
[10]   ETHANOL-PRODUCTION DURING BATCH FERMENTATION WITH SACCHAROMYCES-CEREVISIAE - CHANGES IN GLYCOLYTIC-ENZYMES AND INTERNAL PH [J].
DOMBEK, KM ;
INGRAM, LO .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1987, 53 (06) :1286-1291