Molecular Basis for a Protein-Mediated DNA-Bridging Mechanism that Functions in Condensation of the E. coli Chromosome

被引:76
作者
Dupaigne, Pauline [1 ]
Tonthat, Nam K. [2 ]
Espeli, Olivier [1 ]
Whitfill, Travis [2 ]
Boccard, Frederic [1 ]
Schumacher, Maria A. [2 ]
机构
[1] Associe Univ Paris Sud, CNRS, Ctr Genet Mol, F-91198 Gif Sur Yvette, France
[2] Duke Univ, Sch Med, Dept Biochem, Durham, NC 27710 USA
基金
美国国家卫生研究院;
关键词
ESCHERICHIA-COLI CHROMOSOME; DOMAIN-STRUCTURE; SEGREGATION; ORGANIZATION; SYSTEM; MACRODOMAIN; SCATTERING; COMPLEXES; TERMINUS; DYNAMICS;
D O I
10.1016/j.molcel.2012.09.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The E. coli chromosome is condensed into insulated regions termed macrodomains (MDs), which are essential for genonnic packaging. How chromosomal MDs are specifically organized and compacted is unknown. Here, we report studies revealing the molecular basis for Terminus-containing (Ter) chromosome condensation by the Ter-specific factor MatP. MatP contains a tripartite fold with a four-helix bundle DNA-binding motif, ribbon-helix-helix and C-terminal coiled-coil. Strikingly, MatP-matS structures show that the MatP coiled-coils form bridged tetramers that flexibly link distant matS sites. Atomic force microscopy and electron microscopy studies demonstrate that MatP alone loops DNA. Mutation of key coiled-coil residues destroys looping and causes a loss of Ter condensation in vivo. Thus, these data reveal the molecular basis for a protein-mediated DNA-bridging mechanism that mediates condensation of a large chromosomal domain in enterobacteria.
引用
收藏
页码:560 / 571
页数:12
相关论文
共 33 条
[21]   Global rigid body modeling of macromolecular complexes against small-angle scattering data [J].
Petoukhov, MV ;
Svergun, DI .
BIOPHYSICAL JOURNAL, 2005, 89 (02) :1237-1250
[22]   Topological domain structure of the Escherichia coli chromosome [J].
Postow, L ;
Hardy, CD ;
Arsuaga, J ;
Cozzarelli, NR .
GENES & DEVELOPMENT, 2004, 18 (14) :1766-1779
[23]   Plasmid partitioning and the spreading of P1 partition protein ParB [J].
Rodionov, O ;
Yarmolinsky, M .
MOLECULAR MICROBIOLOGY, 2004, 52 (04) :1215-1223
[24]   Ribbon-helix-helix transcription factors: variations on a theme [J].
Schreiter, Eric R. ;
Drennan, Catherine L. .
NATURE REVIEWS MICROBIOLOGY, 2007, 5 (09) :710-720
[25]   Genomic interactions: Chromatin loops and gene meeting points in transcriptional regulation [J].
Sexton, Tom ;
Bantignies, Frederic ;
Cavalli, Giacomo .
SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2009, 20 (07) :849-855
[26]   Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials [J].
Shlyakhtenko, LS ;
Gall, AA ;
Filonov, A ;
Cerovac, Z ;
Lushnikov, A ;
Lyubchenko, YL .
ULTRAMICROSCOPY, 2003, 97 (1-4) :279-287
[27]   Measuring chromosome dynamics on different time scales using resolvases with varying half-lives [J].
Stein, RA ;
Deng, S ;
Higgins, NP .
MOLECULAR MICROBIOLOGY, 2005, 56 (04) :1049-1061
[28]   Determination of domain structure of proteins from X-ray solution scattering [J].
Svergun, DI ;
Petoukhov, MV ;
Koch, MHJ .
BIOPHYSICAL JOURNAL, 2001, 80 (06) :2946-2953
[29]   Automated MAD and MIR structure solution [J].
Terwilliger, TC ;
Berendzen, J .
ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 1999, 55 :849-861
[30]   Chromosome organization and segregation in bacteria [J].
Thanbichler, Martin ;
Shapiro, Lucy .
JOURNAL OF STRUCTURAL BIOLOGY, 2006, 156 (02) :292-303