Surface Enzyme Chemistries for Ultrasensitive Microarray Biosensing with SPR Imaging

被引:34
作者
Fasoli, Jennifer B. [1 ]
Corn, Robert M. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem, Irvine, CA 92697 USA
基金
美国国家卫生研究院;
关键词
RNA APTAMER MICROARRAYS; FUNCTIONAL NUCLEIC-ACIDS; IN-VITRO SELECTION; ON-CHIP SYNTHESIS; PLASMON RESONANCE; DNA MICROARRAYS; PROTEIN MICROARRAYS; NANOPARTICLES; POLYMERASE; ARRAY;
D O I
10.1021/la504797z
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The sensitivity and selectivity of surface plasmon resonance imaging (SPRI) biosensing with nucleic acid microarrays can be greatly enhanced by exploiting various nucleic acid ligases, nucleases, and polymerases that manipulate the surface-bound DNA and RNA. We describe here various examples from each of these different classes of surface enzyme chemistries that have been incorporated into novel detection strategies that either drastically enhance the sensitivity of or create uniquely selective methods for the SPRI biosensing of proteins and nucleic acids. A dual-element generator detector microarray approach that couples a bioaffinity adsorption event on one microarray element to nanoparticle-enhanced SPRI measurements of nucleic acid hybridization adsorption on a different microarray element is used to quantitatively detect DNA, RNA, and proteins at femtomolar concentrations. Additionally, this dual-element format can be combined with the transcription and translation of RNA from surface-bound double-stranded DNA (dsDNA) templates for the on-chip multiplexed biosynthesis of aptamer and protein microarrays in a microfluidic format; these microarrays can be immediately used for real-time SPRI bioaffinity sensing measurements.
引用
收藏
页码:9527 / 9536
页数:10
相关论文
共 70 条
[1]   Recent progress in SERS biosensing [J].
Bantz, Kyle C. ;
Meyer, Audrey F. ;
Wittenberg, Nathan J. ;
Im, Hyungsoon ;
Kurtulus, Ozge ;
Lee, Si Hoon ;
Lindquist, Nathan C. ;
Oh, Sang-Hyun ;
Haynes, Christy L. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (24) :11551-11567
[2]   Proteins and proteomics: life on the surface [J].
Blow, Nathan .
NATURE METHODS, 2009, 6 (05) :389-392
[3]  
Breaker R R, 1994, Chem Biol, V1, P223, DOI 10.1016/1074-5521(94)90014-0
[4]   Surface plasmon resonance imaging measurements of ultrathin organic films [J].
Brockman, JM ;
Nelson, BP ;
Corn, RM .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2000, 51 :41-63
[5]  
Brody E N, 2000, J Biotechnol, V74, P5, DOI 10.1016/S1389-0352(99)00004-5
[6]   Plasmonics for future biosensors [J].
Brolo, Alexandre G. .
NATURE PHOTONICS, 2012, 6 (11) :709-713
[7]   MicroRNA signatures in human cancers [J].
Calin, George A. ;
Croce, Carlo M. .
NATURE REVIEWS CANCER, 2006, 6 (11) :857-866
[8]   A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA) [J].
Castoldi, M ;
Schmidt, S ;
Benes, V ;
Noerholm, M ;
Kulozik, AE ;
Hentze, MW ;
Muckenthaler, MU .
RNA, 2006, 12 (05) :913-920
[9]   Amplified QCM-D biosensor for protein based on aptamer-functionalized gold nanoparticles [J].
Chen, Qiang ;
Tang, Wei ;
Wang, Dingzhong ;
Wu, Xiaojie ;
Li, Na ;
Liu, Feng .
BIOSENSORS & BIOELECTRONICS, 2010, 26 (02) :575-579
[10]   DNAzyme Footprinting: Detecting Protein-Aptamer Complexation on Surfaces by Blocking DNAzyme Cleavage Activity [J].
Chen, Yulin ;
Corn, Robert M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (06) :2072-2075