Generalized Choquard Equations Driven by Nonhomogeneous Operators

被引:20
作者
Alves, Claudianor O. [1 ]
Radulescu, Vicentiu D. [2 ,3 ,4 ]
Tavares, Leandro S. [5 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Inst Math Phys & Mech, Ljubljana 1000, Slovenia
[4] Romanian Acad, Inst Math Simion Stoilow, Bucharest 014700, Romania
[5] Univ Fed Cariri, Ctr Ciencias & Tecnol, BR-63048080 Juazeiro De Norte, CE, Brazil
关键词
Choquard equation; variational methods; nonlinear elliptic equation; Hardy-Littlewood-Sobolev inequality; LINEAR ELLIPTIC-EQUATIONS; EXISTENCE; WAVES;
D O I
10.1007/s00009-018-1287-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we prove the existence of solutions for a class of generalized Choquard equations involving the phi-Laplacian operator. Our arguments are essentially based on variational methods. One of the main difficulties in this approach is to use the Hardy-Littlewood-Sobolev inequality for nonlinearities involving N-functions. The methods developed in this paper can be extended to wide classes of nonlinear problems driven by nonhomogeneous operators.
引用
收藏
页数:24
相关论文
共 41 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]  
Adams A., 2003, SOBOLEV SPACES
[3]  
Alves C.O., 2016, ELECTRON J DIFFER EQ, V2016, P1
[4]   Existence of solutions for a nonlinear Choquard equation with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Figueiredo, Giovany M. ;
Yang, Minbo .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (04) :331-345
[5]   Multiplicity and concentration of positive solutions for a class of quasilinear problems through Orlicz-Sobolev space [J].
Alves, Claudianor O. ;
da Silva, Ailton R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (11)
[6]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[7]  
Alves CO, 2014, TOPOL METHOD NONL AN, V44, P435
[8]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[9]  
Azzollini A, 2014, CALC VAR PARTIAL DIF, V49, P197, DOI 10.1007/s00526-012-0578-0
[10]  
Bonanno G., 2007, J MATH ANAL APPL, V330, P416, DOI DOI 10.1016/J.JMAA.2006.07.082