On solvability of the Neumann boundary value problem for a non-homogeneous polyharmonic equation in a ball

被引:7
作者
Turmetov, Batirkhan K. [1 ]
Ashurov, Ravshan R. [2 ]
机构
[1] Akhmet Yasawi Int Kazakh Turkish Univ, Dept Math, Turkistan 161200, Kazakhstan
[2] Natl Univ Uzbekistan, Inst Math, Tashkent 100125, Uzbekistan
关键词
non-homogeneous polyharmonic equation; the Neumann problem; the necessary and sufficient conditions for solvability; DIRICHLET PROBLEM; GREEN-FUNCTION;
D O I
10.1186/1687-2770-2013-162
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work the Neumann boundary value problem for a non-homogeneous polyharmonic equation is studied in a unit ball. Necessary and sufficient conditions for solvability of this problem are found. To do this we first reduce the Neumann problem to the Dirichlet problem for a different non-homogeneous polyharmonic equation and then use the Green function of the Dirichlet problem.
引用
收藏
页数:15
相关论文
共 11 条
[1]   ESTIMATES NEAR BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .2. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1964, 17 (01) :35-&
[2]  
BAVRIN II, 1985, DIFF EQUAT+, V21, P6
[3]  
Bitsadze AV., 1968, BOUNDARY VALUE PROBL
[4]   On a new method for constructing the Green function of the Dirichlet problem for the polyharmonic equation [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DIFFERENTIAL EQUATIONS, 2012, 48 (03) :441-445
[5]  
KALMENOV TS, 2008, DOKL AKAD NAUK+, V421, P305
[6]  
[Кангужин Балтабек Есматович Kanguzhin B.E.], 2010, [Уфимский математический журнал, Ufa Mathematical Journal, Ufimskii matematicheskii zhurnal], V2, P41
[7]  
Kanguzhin BE, 2008, MATH J, V8, P50
[8]  
KARACHIK V, 2012, INT J PURE APPL MATH, V0081, P00487
[9]   Construction of Polynomial Solutions to Some Boundary Value Problems for Poisson's Equation [J].
Karachik, V. V. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (09) :1567-1587
[10]   On solvability of a boundary value problem for the Poisson equation with the boundary operator of a fractional order [J].
Torebek, Berikbol T. ;
Turmetov, Batirkhan K. .
BOUNDARY VALUE PROBLEMS, 2013,