Low Thermal Conductivity of Rare-Earth Zirconate-Stannate Solid Solutions (Yb2Zr2O7)1-x(Ln2Sn2O7)x (Ln = Nd, Sm)

被引:36
作者
Zhao, Meng [1 ]
Ren, Xiaorui [1 ]
Yang, Jun [1 ]
Pan, Wei [1 ]
机构
[1] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
THERMOPHYSICAL PROPERTIES; BARRIER COATINGS; PYROCHLORES; CERAMICS;
D O I
10.1111/jace.13979
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Dense monoliths of rare-earth zirconate-stannate solid solutions (Yb2Zr2O7)(1-x)(Ln(2)Sn(2)O(7))(x) (Ln = Nd, Sm) were prepared by solid-state reaction. Characterized by XRD, Raman, SEM, and TEM, a double-phase structure of Yb2Zr2O7-rich fluorite and Nd2Sn2O7-rich pyrochlore was observed in the specimens of x = 0.4 and 0.5 of (Yb2Zr2O7)(1-x)(Nd2Sn2O7)(x) series while complete solid solutions were formed within the whole composition range of (Yb2Zr2O7)(1-x)(Sm2Sn2O7)(x) series. Except for the defect phonon scattering, lattice softening caused by order-disorder phase transformation between pyrochlore and fluorite structures also plays an important role in minimizing the thermal conductivity. Low thermal conductivity with positive temperature dependence is achieved in both the series. Considering the structure stability and low thermal conductivity, rare-earth zirconate-stannate solid solutions may be promising materials for thermal insulating applications, such as thermal barrier coatings.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 30 条
[1]   Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings [J].
Bansal, Narottam P. ;
Zhu, Dongming .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 459 (1-2) :192-195
[2]   Thermal conductivity of (Er1-xYx)2Ti2O7 pyrochlore oxide solid solutions [J].
Bryan, Craig ;
Whitman, Catherine A. ;
Johnson, Michel B. ;
Niven, John F. ;
Murray, Patrick ;
Bourque, Alex ;
Dabkowska, Hanna A. ;
Gaulin, Bruce D. ;
White, Mary Anne .
PHYSICAL REVIEW B, 2012, 86 (05)
[3]   LOWER LIMIT TO THE THERMAL-CONDUCTIVITY OF DISORDERED CRYSTALS [J].
CAHILL, DG ;
WATSON, SK ;
POHL, RO .
PHYSICAL REVIEW B, 1992, 46 (10) :6131-6140
[4]   Ultrasonic Detection of Delamination and Material Characterization of Thermal Barrier Coatings [J].
Chen, Hung-Liang Roger ;
Zhang, Binwei ;
Alvin, Mary Anne ;
Lin, Yun .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2012, 21 (06) :1184-1194
[5]   Thermal barrier coating materials [J].
Clarke, David R. ;
Phillpot, Simon R. .
MATERIALS TODAY, 2005, 8 (06) :22-29
[6]   Materials design for the next generation thermal barrier coatings [J].
Clarke, DR ;
Levi, CG .
ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 :383-417
[7]   The pyrochlore to defect fluorite phase transition in Y2Sn2-xZrxO7 [J].
de los Reyes, Massey ;
Whittle, Karl R. ;
Zhang, Zhaoming ;
Ashbrook, Sharon E. ;
Mitchell, Martin R. ;
Jang, Ling-Yun ;
Lumpkin, Gregory R. .
RSC ADVANCES, 2013, 3 (15) :5090-5099
[8]   Thermophysical properties and thermal cycling behavior of plasma sprayed thick thermal barrier coatings [J].
Guo, HB ;
Vassen, R ;
Stöver, D .
SURFACE & COATINGS TECHNOLOGY, 2005, 192 (01) :48-56
[9]  
Klemens P.G., 1991, HIGH TEMP-HIGH PRESS, V23, P241
[10]  
Leitner J, 2003, THERMOCHIM ACTA, V395, P27