Interval estimation for the mean of lognormal data with excess zeros

被引:41
作者
Li, Xinmin [1 ]
Zhou, Xiaohua [2 ,3 ,4 ]
Tian, Lili [5 ]
机构
[1] Qingdao Univ, Coll Math, Qingdao 266071, Peoples R China
[2] Harbin Med Univ, Dept Biostat, Harbin 150081, Heilongjiang, Peoples R China
[3] VA Med Ctr, HSR&D Ctr Excellence, Seattle, WA 98101 USA
[4] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
[5] SUNY Buffalo, Dept Biostat, Buffalo, NY 14214 USA
关键词
Lognormal distribution; Fiducial quantity; Generalized confidence intervals; Coverage probability; GENERALIZED CONFIDENCE-INTERVALS; BINOMIAL PROPORTION; FIDUCIAL-INFERENCE; VALUES;
D O I
10.1016/j.spl.2013.07.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considered interval estimations for the mean of lognormal distribution with excess zeros. We proposed two methods for interval estimation based on an approximate generalized pivotal quantity and a fiducial quantity. Simulation results show that the fiducial approach has highly accurate coverage probability and fairly low bias. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:2447 / 2453
页数:7
相关论文
共 20 条
[1]   Approximate is better than "exact" for interval estimation of binomial proportions [J].
Agresti, A ;
Coull, BA .
AMERICAN STATISTICIAN, 1998, 52 (02) :119-126
[2]  
Brown LD, 2002, ANN STAT, V30, P160
[3]   Interval estimation for a binomial proportion - Comment - Rejoinder [J].
Brown, LD ;
Cai, TT ;
DasGupta, A ;
Agresti, A ;
Coull, BA ;
Casella, G ;
Corcoran, C ;
Mehta, C ;
Ghosh, M ;
Santner, TJ ;
Brown, LD ;
Cai, TT ;
DasGupta, A .
STATISTICAL SCIENCE, 2001, 16 (02) :101-133
[4]   GENERALIZED FIDUCIAL INFERENCE FOR NORMAL LINEAR MIXED MODELS [J].
Cisewski, Jessi ;
Hannig, Jan .
ANNALS OF STATISTICS, 2012, 40 (04) :2102-2127
[5]  
DAVID AP, 1982, ANN STAT, V10, P1054
[6]  
Fisher RA, 1930, P CAMB PHILOS SOC, V26, P528
[7]   Fiducial generalized confidence intervals [J].
Hannig, J ;
Iyer, H ;
Patterson, P .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :254-269
[8]   Generalized fiducial inference for wavelet regression [J].
Hannig, Jan ;
Lee, Thomas C. M. .
BIOMETRIKA, 2009, 96 (04) :847-860
[9]  
Hannig J, 2006, AUST J STAT, V35, P261
[10]  
Hannig J, 2009, STAT SINICA, V19, P491