Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection

被引:147
作者
Chen, Anyi [1 ]
Gui, Guo-Feng [1 ]
Zhuo, Ying [1 ]
Chai, Ya-Qin [1 ]
Xiang, Yun [1 ]
Yuan, Ruo [1 ]
机构
[1] Southwest Univ, Coll Chem & Chem Engn, Minist Educ, Key Lab Luminescent & Real Time Analyt Chem, Chongqing 400715, Peoples R China
关键词
SENSITIVE DETECTION;
D O I
10.1021/acs.analchem.5b01168
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A target induced cycling strand displacement amplification (SDA) mediated by phi29 DNA polymerase (phi29) was first investigated and applied in a signal-off electrochemiluminescence (ECL) biosensor for microRNA (miRNA) detection. Herein, the target miRNA triggered the phi29-mediated SDA which could produce amounts of single-stranded DNA (assistant probe) with accurate and comprehensive nucleotide sequence. Then, the assistant probe hybridized with the capture probe and the ferrocene-labeled probe (Pc-probe) to form a ternary "Y" structure for ECL signal quenching by ferrocene. Therefore, the ECL intensity would decrease with increasing concentration of the target miRNA, and the sensitivity of biosensor would be promoted on account of the efficient signal amplification of the target induced cycling reaction. Besides, a self-enhanced Ru(II) ECL system was designed to obtain a stable and strong initial signal to further improve the sensitivity. The ECL assay for miRNA-21 detection is developed with excellent sensitivity of a concentration variation from 10 aM to 1.0 pM and limit of detection down to 3.3 aM.
引用
收藏
页码:6328 / 6334
页数:7
相关论文
共 30 条
[1]   Specific and complete human genome amplification with improved yield achieved by phi29 DNA polymerase and a novel primer at elevated temperature [J].
Alsmadi O. ;
Alkayal F. ;
Monies D. ;
Meyer B.F. .
BMC Research Notes, 2 (1)
[2]   Quenching of the electrochemiluminescence of tris( 2,2′-bipyridine) ruthenium(II) by ferrocene and its potential application to quantitative DNA detection [J].
Cao, Weidong ;
Ferrance, Jerome P. ;
Demas, James ;
Landers, James P. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (23) :7572-7578
[3]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[4]   Highly selective detection of microRNA based on distance-dependent electrochemiluminescence resonance energy transfer between CdTe nanocrystals and Au nanoclusters [J].
Cheng, Yan ;
Lei, Jianping ;
Chen, Yunlong ;
Ju, Huangxian .
BIOSENSORS & BIOELECTRONICS, 2014, 51 :431-436
[5]   MicroRNA: Function, Detection, and Bioanalysis [J].
Dong, Haifeng ;
Lei, Jianping ;
Ding, Lin ;
Wen, Yongqiang ;
Ju, Huangxian ;
Zhang, Xueji .
CHEMICAL REVIEWS, 2013, 113 (08) :6207-6233
[6]   Trace and Label-Free MicroRNA Detection Using Oligonucleotide Encapsulated Silver Nanoclusters as Probes [J].
Dong, Haifeng ;
Jin, Shi ;
Ju, Huangxian ;
Hao, Kaihong ;
Xu, Li-Ping ;
Lu, Huiting ;
Zhang, Xueji .
ANALYTICAL CHEMISTRY, 2012, 84 (20) :8670-8674
[7]   Highly Sensitive Multiple microRNA Detection Based on Fluorescence Quenching of Graphene Oxide and Isothermal Strand-Displacement Polymerase Reaction [J].
Dong, Haifeng ;
Zhang, Jing ;
Ju, Huangxian ;
Lu, Huiting ;
Wang, Shiyan ;
Jin, Shi ;
Hao, Kaihong ;
Du, Hongwu ;
Zhang, Xueji .
ANALYTICAL CHEMISTRY, 2012, 84 (10) :4587-4593
[8]   Lab in a Tube: Ultrasensitive Detection of MicroRNAs at the Single-Cell Level and in Breast Cancer Patients Using Quadratic Isothermal Amplification [J].
Duan, Ruixue ;
Zuo, Xiaolei ;
Wang, Shutao ;
Quan, Xiyun ;
Chen, Dongliang ;
Chen, Zhifei ;
Jiang, Lei ;
Fan, Chunhai ;
Xia, Fan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (12) :4604-4607
[9]   In Situ Generation of Self-Enhanced Luminophore by β-Lactamase Catalysis for Highly Sensitive Electrochemiluminescent Aptasensor [J].
Gui, Guo-Feng ;
Zhuo, Ying ;
Chai, Ya-Qin ;
Xiang, Yun ;
Yuan, Ruo .
ANALYTICAL CHEMISTRY, 2014, 86 (12) :5873-5880
[10]   Amplified microRNA detection by templated chemistry [J].
Harcourt, Emily M. ;
Kool, Eric T. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (09) :e65