Gaps in the spectrum of a waveguide composed of domains with different limiting dimensions

被引:17
作者
Bakharev, F. L. [1 ]
Nazarov, St. A. [2 ]
机构
[1] St Petersburg State Univ, St Petersburg 199034, Russia
[2] St Petersburg State Univ, St Petersburg State Polytech Univ, Inst Problems Mech Engn, St Petersburg 199034, Russia
基金
俄罗斯基础研究基金会;
关键词
Neumann problem; junction of domains with different limiting dimensions; periodic waveguide; spectral gaps; asymptotics; ASYMPTOTICS;
D O I
10.1134/S0037446615040023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an acoustic waveguide (the Neumann problem for the Helmholtz equation) shaped like a periodic family of identical beads on a thin cylinder rod. Under minor restrictions on the bead and rod geometry, we use asymptotic analysis to establish the opening of spectral gaps and find their geometric characteristics. The main technical difficulties lie in the justification of asymptotic formulas for the eigenvalues of the model problem on the periodicity cell due to its arbitrary shape.
引用
收藏
页码:575 / 592
页数:18
相关论文
共 14 条
[1]  
[Anonymous], 1985, Appl. Math. Sci.
[2]  
[Anonymous], DOKL AKAD NAUK SSSR
[3]   Junctions of singularly degenerating domains with different limit dimensions. II [J].
Nazarov S.A. .
Journal of Mathematical Sciences, 1999, 97 (3) :4085-4108
[4]  
Arsen'ev A. A., 1976, COMP MATH MATH PHYS+, V16, P171, DOI [10.1016/0041-5553(76)90212-3, DOI 10.1016/0041-5553(76)90212-3]
[5]   SCATTERING FREQUENCIES OF RESONATORS [J].
BEALE, JT .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1973, 26 (04) :549-563
[6]   On the eigenvalues of a "dumb-bell with a thin handle" [J].
Gadyl'shin, RR .
IZVESTIYA MATHEMATICS, 2005, 69 (02) :265-329
[7]   ON EIGENFREQUENCIES OF BODIES WITH THIN BRANCHES .2. ASYMPTOTICS [J].
GADYLSHIN, RR .
MATHEMATICAL NOTES, 1994, 55 (1-2) :14-23
[8]   Gaps in the spectrum of the Neumann Laplacian generated by a system of periodically distributed traps [J].
Khrabustovskyi, Andrii ;
Khruslov, Evgeni .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (01) :11-26
[9]   Periodic elliptic operators with asymptotically preassigned spectrum [J].
Khrabustovskyi, Andrii .
ASYMPTOTIC ANALYSIS, 2013, 82 (1-2) :1-37
[10]  
Kozlov V. A., 1994, Asymptotic Analysis, V8, P105