Combining classification and regression trees and the neuro-fuzzy inference system for environmental data modeling

被引:4
|
作者
Burrows, WR [1 ]
机构
[1] Atmospher Environm Serv, Meteorol Res Branch, Downsview, ON M3H 5T4, Canada
关键词
D O I
10.1109/NAFIPS.1999.781783
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A procedure is presented for dynamic-statistical modeling of predictands with non-linear predictand-predictor relationships when there are many potential predictors. Classification and Regression Trees (CART) is used for predictor selection and data stratification. CART output is suitable for piecewise-continuous predictands. Using predictors selected by CART, a neuro-fuzzy inference system (NFIS) algorithm produces an output model for continuous predictands. Application to modeling ground-level ozone is discussed.
引用
收藏
页码:695 / 699
页数:5
相关论文
共 50 条
  • [1] QSRR study of psychiatric drugs using Classification and Regression Trees combined with adaptive Neuro-Fuzzy Inference System
    Jalali-Heravi, Mehdi
    Shahbazikhah, Parvis
    Ghadiri-Bidhendi, Atieh
    QSAR & COMBINATORIAL SCIENCE, 2008, 27 (06): : 729 - 739
  • [2] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [3] Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system
    Danesh, Sedigheh
    Farnoosh, Rahman
    Razzaghnia, Tahereh
    NEUROCOMPUTING, 2016, 173 : 1450 - 1460
  • [4] Modeling and predict environmental indicators for land leveling using adaptive neuro-fuzzy inference system (ANFIS), and regression
    Mirzaei, Farhad
    Delavar, Mahmoud
    Alzoubi, Isham
    Arrabi, Babak Nadjar
    INTERNATIONAL JOURNAL OF ENERGY SECTOR MANAGEMENT, 2018, 12 (04) : 484 - 506
  • [5] Machine fault diagnosis and condition prognosis using classification and regression trees and neuro-fuzzy inference systems
    Tran, Van Tung
    Yang, Bo-Suk
    CONTROL AND CYBERNETICS, 2010, 39 (01): : 25 - 54
  • [6] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [8] Adaptive Neuro-Fuzzy Inference System for Classification of ECG Signal
    Muthuvel, K.
    Suresh, L. Padma
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT 2013), 2013, : 1162 - 1166
  • [9] Adaptive Neuro-Fuzzy Inference System for Texture Image Classification
    Kuncoro, B. Ari
    Suharjito
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON AUTOMATION, COGNITIVE SCIENCE, OPTICS, MICRO ELECTRO-MECHANICAL SYSTEM, AND INFORMATION TECHNOLOGY (ICACOMIT), 2015, : 196 - 200
  • [10] A study on the application of regression trees and Adaptive Neuro-Fuzzy Inference System in glass manufacturing process for packaging
    Costa, Herbert R. do N.
    La Neve, Alessandro
    2016 ANNUAL CONFERENCE OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY (NAFIPS), 2016,