Multi-class Motor Imagery Classification by Singular Value Decomposition and Deep Boltzmann Machine

被引:0
作者
Yu, Zhongliang [1 ]
Song, Jinchun [1 ]
机构
[1] Northeastern Univ, Sch Mech Engn & Automat, Shenyang, Liaoning, Peoples R China
来源
2017 IEEE 3RD INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC) | 2017年
基金
中国国家自然科学基金;
关键词
Brain computer interface; Motor imagery; Deep boltzmann machine; Multi-class; Classification; EEG; PATTERNS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Motor function rehabilitation is very urgent for patients. Motor imagery is an efficient way for rehabilitation. To achieve the supervision of multiple rehabilitation targets simultaneously, the promotion of multi-class motor imagery classification accuracy is critical. In this paper, a multi-class classification method is proposed by utilizing singular value decomposition and deep boltzmann machine. Singular value decomposition is applied to suppress the artifacts and acquire the channel-individual characteristics. The deep boltzmann machine is employed to extract and model the characteristics and achieve the motor imagery classification. Results demonstrate that the proposed method has achieved a 14.2% higher classification accuracy than the common spatial pattern on average. This results are further validated by the statistical methods, which present a significant difference (p < 0.05). The proposed method is favorable for promoting the multi-class motor imagery classification efficiency.
引用
收藏
页码:376 / 379
页数:4
相关论文
共 20 条
  • [1] A Randomized Controlled Trial of EEG-Based Motor Imagery Brain-Computer Interface Robotic Rehabilitation for Stroke
    Ang, Kai Keng
    Chua, Karen Sui Geok
    Phua, Kok Soon
    Wang, Chuanchu
    Chin, Zheng Yang
    Kuah, Christopher Wee Keong
    Low, Wilson
    Guan, Cuntai
    [J]. CLINICAL EEG AND NEUROSCIENCE, 2015, 46 (04) : 310 - 320
  • [2] Ang Kai Keng, 2014, Front Neuroeng, V7, P30, DOI 10.3389/fneng.2014.00030
  • [3] Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs
    Ang, Kai Keng
    Chin, Zheng Yang
    Zhang, Haihong
    Guan, Cuntai
    [J]. PATTERN RECOGNITION, 2012, 45 (06) : 2137 - 2144
  • [4] Multiclass Brain-Computer Interface Classification by Riemannian Geometry
    Barachant, Alexandre
    Bonnet, Stephane
    Congedo, Marco
    Jutten, Christian
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (04) : 920 - 928
  • [5] Caligiore D., 2016, NEUROSCIENCE BIOBEHA
  • [6] Motor imagery group practice for gait rehabilitation in individuals with post-stroke hemiparesis: A pilot study
    Dickstein, Ruth
    Levy, Sandra
    Shefi, Sara
    Holtzman, Sarit
    Peleg, Sara
    Vatine, Jean-Jacques
    [J]. NEUROREHABILITATION, 2014, 34 (02) : 267 - 276
  • [7] Combined optimization of spatial and temporal filters for improving brain-computer interfacing
    Dornhege, Guido
    Blankertz, Benjamin
    Krauledat, Matthias
    Losch, Florian
    Curio, Gabriel
    Mueller, Klaus-Robert
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (11) : 2274 - 2281
  • [8] Heinze N., 2015, CLIN NEUROPHYSIOL, V126, pe156
  • [9] Optimal Spatio-Spectral Variable Size Subbands Filter For Motor Imagery Brain Computer Interface
    Kirar, Jyoti Singh
    Agrawal, R. K.
    [J]. PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2015), 2016, 84 : 14 - 21
  • [10] Enhancing Nervous System Recovery through Neurobiologics, Neural Interface Training, and Neurorehabilitation
    Krucoff, Max O.
    Rahimpour, Shervin
    Slutzky, Marc W.
    Edgerton, V. Reggie
    Turner, Dennis A.
    [J]. FRONTIERS IN NEUROSCIENCE, 2016, 10