Opinion Mining from Online Reviews in Bali Tourist Area

被引:0
|
作者
Prameswari, Puteri [1 ]
Surjandari, Isti [1 ]
Laoh, Enrico [1 ]
机构
[1] Univ Indonesia, Dept Ind Engn, Fac Engn, Depok 16424, Indonesia
来源
2017 3RD INTERNATIONAL CONFERENCE ON SCIENCE IN INFORMATION TECHNOLOGY (ICSITECH) | 2017年
关键词
aspect-based sentiment analysis; opinion mining; hospitality industry; text mining; RNTN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bali Island is the most popular tourist destination in Indonesia. Bali needs to make continuous quality improvements of its tourism industry by devoting particular attention to the hotel as an integral part of tourism. Through hotel user reviews, hotel managers gained insight about the hotel condition that was perceived by the users. based on online reviews in Tripadvisor.com, this study used text mining approach and aspect-based sentiment analysis to obtain hotel user opinion in the form of sentiment. Aspect-based sentiment analysis is able to provide information that is not provided by the typical sentiment analysis. To perform these tasks, this study tries to apply the Recursive Neural Tensor Network (RNTN) algorithm, which was commonly used for classifying sentiment in sentence level. With the average accuracy of 85%, the proposed algorithm performed well in classifying the sentiment of words or aspects. Moreover, the output can be used for evaluation in improving the quality of the hospitality industry as well as supporting the tourism industry in Indonesia.
引用
收藏
页码:226 / 230
页数:5
相关论文
共 50 条
  • [1] Mining opinion targets and opinion words from online reviews
    Tran T.K.
    Phan T.T.
    International Journal of Information Technology, 2017, 9 (3) : 239 - 249
  • [2] Opinion Mining for Online Customer Reviews
    Nanda, Ashok Kumar
    Jalda, Chaitra Sai
    Kumar, V. Pradeep
    Chakali, Venkata Sai Varun
    Munavath, Krishnaveni
    Marukanti, Srihari Prasad Reddy
    Boreda, Divya
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON DATA SCIENCE, MACHINE LEARNING AND APPLICATIONS, VOL 1, ICDSMLA 2023, 2025, 1273 : 903 - 910
  • [3] Mining Feature-Opinion in Online Customer Reviews for Opinion Summarization
    Somprasertsri, Gamgarn
    Lalitrojwong, Pattarachai
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2010, 16 (06) : 938 - 955
  • [4] Opinion Mining from User Reviews
    Tripathy, Amiya Kumar
    Sundararajan, Revathy
    Deshpande, Chinmay
    Mishra, Pankaj
    Natarajan, Neha
    2015 INTERNATIONAL CONFERENCE ON TECHNOLOGY FOR SUSTAINABLE DEVELOPMENT (ICTSD-2015), 2015,
  • [5] Mining opinion components from unstructured reviews: A review
    Khan, Khairullah
    Baharudin, Baharum
    Khan, Aurnagzeb
    Ullah, Ashraf
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2014, 26 (03) : 258 - 275
  • [6] A machine learning approach for opinion mining online customer reviews
    Thai Kim Phung
    Nguyen An Te
    Tran Thi Thu Ha
    2021 21ST ACIS INTERNATIONAL WINTER CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD-WINTER 2021), 2021, : 243 - 246
  • [7] Extracting Implicit Features in Online Customer Reviews for Opinion Mining
    Zhang, Yu
    Zhu, Weixiang
    PROCEEDINGS OF THE 22ND INTERNATIONAL CONFERENCE ON WORLD WIDE WEB (WWW'13 COMPANION), 2013, : 103 - 104
  • [8] Opinion Mining and Summarization of Hotel Reviews
    Raut, Vijay B.
    Londhe, D. D.
    2014 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS, 2014, : 556 - 559
  • [9] AN INTEGRATED APPROACH FOR SUPERVISED LEARNING OF ONLINE USER REVIEWS USING OPINION MINING
    Shobana
    Leema, Anny
    IIOAB JOURNAL, 2016, 7 (09) : 117 - 124
  • [10] Recommending Products to Customers using Opinion Mining of Online Product Reviews and Features
    Rajeev, Venkata P.
    Rekha, Smrithi, V
    2015 INTERNATIONAL CONFERENCED ON CIRCUITS, POWER AND COMPUTING TECHNOLOGIES (ICCPCT-2015), 2015,