LO-Net: Deep Real-time Lidar Odometry

被引:143
作者
Li, Qing [1 ]
Chen, Shaoyang [1 ]
Wang, Cheng [1 ]
Li, Xin [2 ]
Wen, Chenglu [1 ]
Cheng, Ming [1 ]
Li, Jonathan [1 ]
机构
[1] Xiamen Univ, Xiamen, Fujian, Peoples R China
[2] Louisiana State Univ, Baton Rouge, LA 70803 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
VISION;
D O I
10.1109/CVPR.2019.00867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel deep convolutional network pipeline, LO-Net, for real-time lidar odometry estimation. Un-like most existing lidar odometry (LO) estimations that go through individually designed feature selection, feature matching, and pose estimation pipeline, LO-Net can be trained in an end-to-end manner. With a new mask-weighted geometric constraint loss, LO-Net can effectively learn feature representation for LO estimation, and can implicitly exploit the sequential dependencies and dynamics in the data. We also design a scan-to-map module, which uses the geometric and semantic information learned in LO-Net, to improve the estimation accuracy. Experiments on bench-mark datasets demonstrate that LO-Net outperforms existing learning based approaches and has similar accuracy with the state-of-the-art geometry-based approach, LOAM.
引用
收藏
页码:8465 / 8474
页数:10
相关论文
共 42 条
  • [21] Granold M, 2013, MOL BIOL CELL, V24
  • [22] Grant WS, 2013, IEEE INT C INT ROBOT, P4347, DOI 10.1109/IROS.2013.6696980
  • [23] Hess W, 2016, IEEE INT CONF ROBOT, P1271, DOI 10.1109/ICRA.2016.7487258
  • [24] Holzer S, 2012, IEEE INT C INT ROBOT, P2684, DOI 10.1109/IROS.2012.6385999
  • [25] PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization
    Kendall, Alex
    Grimes, Matthew
    Cipolla, Roberto
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2938 - 2946
  • [26] Kingma DP, 2014, ADV NEUR IN, V27
  • [27] Moosmann F, 2011, IEEE INT VEH SYM, P393, DOI 10.1109/IVS.2011.5940396
  • [28] Ford Campus vision and lidar data set
    Pandey, Gaurav
    McBride, James R.
    Eustice, Ryan M.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2011, 30 (13) : 1543 - 1552
  • [29] Fast Registration Based on Noisy Planes With Unknown Correspondences for 3-D Mapping
    Pathak, Kaustubh
    Birk, Andreas
    Vaskevicius, Narunas
    Poppinga, Jann
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2010, 26 (03) : 424 - 441
  • [30] Pomerleau F, 2013, AUTON ROBOT, V34, P133, DOI 10.1007/s10514-013-9327-2