LO-Net: Deep Real-time Lidar Odometry

被引:143
作者
Li, Qing [1 ]
Chen, Shaoyang [1 ]
Wang, Cheng [1 ]
Li, Xin [2 ]
Wen, Chenglu [1 ]
Cheng, Ming [1 ]
Li, Jonathan [1 ]
机构
[1] Xiamen Univ, Xiamen, Fujian, Peoples R China
[2] Louisiana State Univ, Baton Rouge, LA 70803 USA
来源
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019) | 2019年
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
VISION;
D O I
10.1109/CVPR.2019.00867
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a novel deep convolutional network pipeline, LO-Net, for real-time lidar odometry estimation. Un-like most existing lidar odometry (LO) estimations that go through individually designed feature selection, feature matching, and pose estimation pipeline, LO-Net can be trained in an end-to-end manner. With a new mask-weighted geometric constraint loss, LO-Net can effectively learn feature representation for LO estimation, and can implicitly exploit the sequential dependencies and dynamics in the data. We also design a scan-to-map module, which uses the geometric and semantic information learned in LO-Net, to improve the estimation accuracy. Experiments on bench-mark datasets demonstrate that LO-Net outperforms existing learning based approaches and has similar accuracy with the state-of-the-art geometry-based approach, LOAM.
引用
收藏
页码:8465 / 8474
页数:10
相关论文
共 42 条
  • [11] [Anonymous], 2016, ARXIV160207360
  • [12] [Anonymous], 2018, EUR C COMP VIS ECCV
  • [13] [Anonymous], P IEEE INT C ROB AUT
  • [14] A METHOD FOR REGISTRATION OF 3-D SHAPES
    BESL, PJ
    MCKAY, ND
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (02) : 239 - 256
  • [15] Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age
    Cadena, Cesar
    Carlone, Luca
    Carrillo, Henry
    Latif, Yasir
    Scaramuzza, Davide
    Neira, Jose
    Reid, Ian
    Leonard, John J.
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2016, 32 (06) : 1309 - 1332
  • [16] Algorithms for the Ring Star Problem
    Chen, Xujin
    Hu, Xiaodong
    Tang, Zhongzheng
    Wang, Chenhao
    Zhang, Ying
    [J]. COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2017, PT II, 2017, 10628 : 3 - 16
  • [17] Douillard B, 2012, IEEE INT CONF ROBOT, P3033, DOI 10.1109/ICRA.2012.6224788
  • [18] Data-Driven 3D Primitives for Single Image Understanding
    Fouhey, David F.
    Gupta, Abhinav
    Hebert, Martial
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, : 3392 - 3399
  • [19] Vision meets robotics: The KITTI dataset
    Geiger, A.
    Lenz, P.
    Stiller, C.
    Urtasun, R.
    [J]. INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) : 1231 - 1237
  • [20] Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074