Surface Modification Strategies for Improving the Cycling Performance of Ni-Rich Cathode Materials

被引:67
作者
Weber, Daniel [1 ]
Tripkovic, Dordije [1 ]
Kretschmer, Katja [1 ]
Bianchini, Matteo [1 ,2 ]
Brezesinski, Torsten [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Nanotechnol, Battery & Electrochem Lab BELLA, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[2] BASF SE, Carl Bosch Str 38, D-67056 Ludwigshafen, Germany
关键词
Lithium-ion batteries; Cathode materials; Coatings; Doping; Electrochemistry; LITHIUM-ION BATTERIES; LAYERED POSITIVE ELECTRODE; ELECTROCHEMICAL PERFORMANCE; THERMAL-STABILITY; ENERGY-DENSITY; COATED LINI0.8CO0.15AL0.05O2; METAL DISSOLUTION; RATE CAPABILITY; LINIO2; CATHODE; VOLUME CHANGE;
D O I
10.1002/ejic.202000408
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Ni-rich layered lithium metal oxides are the cathode active materials of choice for high-energy-density Li-ion batteries. While the high content of Ni is responsible for the excellent capacity, it is also the source of interfacial instability, limiting the material's lifetime due to a variety of correlated in- and extrinsic factors. Hence, reconciling the opposing trends of high Ni content and long-term cycling stability by modifying the material's surface is one of the challenges in the field. Here, we review various studies on surface modification of Ni-rich (>= 80 %) layered cathode active materials in order to categorize current research efforts. Broadly, the three strategies of coating, surface doping and washing are discussed, each with their advantages and shortcomings. In conclusion, we highlight new directions of research that could bring Ni-rich layered lithium metal oxide cathodes from the laboratory to the real world.
引用
收藏
页码:3117 / 3130
页数:14
相关论文
共 133 条
[1]   The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni1-x-yCOxMny)O2 Cathode Materials [J].
Ahmed, Shamail ;
Pokle, Anuj ;
Schweidler, Simon ;
Beyer, Andreas ;
Bianchini, Matteo ;
Walther, Felix ;
Mazilkin, Andrey ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen ;
Volz, Kerstin .
ACS NANO, 2019, 13 (09) :10694-10704
[2]   New insights into the interactions between electrode materials and electrolyte solutions for advanced nonaqueous batteries [J].
Aurbach, D ;
Markovsky, B ;
Levi, MD ;
Levi, E ;
Schechter, A ;
Moshkovich, M ;
Cohen, Y .
JOURNAL OF POWER SOURCES, 1999, 81 :95-111
[3]   High-throughput computational design of cathode coatings for Li-ion batteries [J].
Aykol, Muratahan ;
Kim, Soo ;
Hegde, Vinay I. ;
Snydacker, David ;
Lu, Zhi ;
Hao, Shiqiang ;
Kirklin, Scott ;
Morgan, Dane ;
Wolverton, C. .
NATURE COMMUNICATIONS, 2016, 7
[4]   Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries [J].
Aykol, Muratahan ;
Kirklin, Scott ;
Wolverton, C. .
ADVANCED ENERGY MATERIALS, 2014, 4 (17)
[5]  
Azeredo H.M.C., 2014, Advances in Biorefineries - Biomass and Waste Supply Chain Exploitation, P819, DOI DOI 10.1533/9780857097385.2.819
[6]   Gas Evolution in All-Solid-State Battery Cells [J].
Bartsch, Timo ;
Strauss, Florian ;
Hatsukade, Toni ;
Schiele, Alexander ;
Kim, A-Young ;
Hartmann, Pascal ;
Janek, Juergen ;
Brezesinski, Torsten .
ACS ENERGY LETTERS, 2018, 3 (10) :2539-2543
[7]   Surface Modification of Ni-Rich LiNi0.8Co0.1Mn0.1O2 Cathode Material by Tungsten Oxide Coating for Improved Electrochemical Performance in Lithium-Ion Batteries [J].
Becker, Dina ;
Boerner, Markus ;
Noelle, Roman ;
Diehl, Marcel ;
Klein, Sven ;
Rodehorst, Uta ;
Schmuch, Richard ;
Winter, Martin ;
Placke, Tobias .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) :18404-18414
[8]   Unified picture of anionic redox in Li/Na-ion batteries [J].
Ben Yahia, Mouna ;
Vergnet, Jean ;
Saubanere, Matthieu ;
Doublet, Marie-Liesse .
NATURE MATERIALS, 2019, 18 (05) :496-+
[9]  
Bianchini M., 2019, ANGEW CHEM, V131, P10542, DOI DOI 10.1002/ANGE.201812472
[10]   There and Back Again-The Journey of LiNiO2 as a Cathode Active Material [J].
Bianchini, Matteo ;
Roca-Ayats, Maria ;
Hartmann, Pascal ;
Brezesinski, Torsten ;
Janek, Juergen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (31) :10434-10458