Modeling of Fuzzy Control Design for Nonlinear Systems Based on Takagi-Sugeno Method

被引:0
作者
Tsai, Pu-Sheng [1 ]
Wu, Ter-Feng [2 ]
Hu, Nien-Tsu [3 ]
Chen, Jen-Yang [4 ]
机构
[1] China Univ Sci & Technol, Dept Elect Engn, Taipei 11581, Taiwan
[2] Natl Ilan Univ, Dept Elect Engn, Ilan 26047, Taiwan
[3] Chung Shan Inst Sci & Technol, Integrated Logist Support Ctr, Taoyuan 32599, Taiwan
[4] Ming Chuan Univ, Dept Elect Engn, Taoyuan 33348, Taiwan
来源
2014 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION HIDING AND MULTIMEDIA SIGNAL PROCESSING (IIH-MSP 2014) | 2014年
关键词
Takagi-Sugeno fuzzy systems; nonlinear dynamic systems; fuzzy modeling; LYAPUNOV STABILITY; IDENTIFICATION;
D O I
10.1109/IIH-MSP.2014.243
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we first develop a procedure for constructing Takagi-Sugeno fuzzy systems from input-output pairs to identify nonlinear dynamic systems. The fuzzy system can approximate any nonlinear continuous function to any arbitrary accuracy that is substantiated by the Stone Weierstrass theorem. A learning-based algorithm is proposed in this paper for the identification of T-S (Takagi-Sugeno) models. Our modeling algorithm contains four blocks: fuzzy C-Mean partition block, LS coarse tuning, fine turning by gradient descent, and emulation block. The ultimate target is to design a fuzzy modeling to meet the requirements of both simplicity and accuracy for the input-output behavior.
引用
收藏
页码:970 / 973
页数:4
相关论文
共 10 条
[1]   Lyapunov stability of complementarity and extended systems [J].
Camlibel, M. Kanat ;
Pang, Jong-Shi ;
Shen, Jingali .
SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (04) :1056-1101
[2]  
Cotter N E, 1990, IEEE Trans Neural Netw, V1, P290, DOI 10.1109/72.80265
[3]   Adaptive fuzzy control of uncertain stochastic nonlinear systems with unknown dead zone using small-gain approach [J].
Li, Yongming ;
Tong, Shaocheng ;
Li, Tieshan ;
Jing, Xingjian .
FUZZY SETS AND SYSTEMS, 2014, 235 :1-24
[4]  
Soltanpour MR, 2013, INT J INNOV COMPUT I, V9, P2713
[5]   SUCCESSIVE IDENTIFICATION OF A FUZZY MODEL AND ITS APPLICATIONS TO PREDICTION OF A COMPLEX SYSTEM [J].
SUGENO, M ;
TANAKA, K .
FUZZY SETS AND SYSTEMS, 1991, 42 (03) :315-334
[6]   FUZZY IDENTIFICATION OF SYSTEMS AND ITS APPLICATIONS TO MODELING AND CONTROL [J].
TAKAGI, T ;
SUGENO, M .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1985, 15 (01) :116-132
[7]   FUZZY BASIS FUNCTIONS, UNIVERSAL APPROXIMATION, AND ORTHOGONAL LEAST-SQUARES LEARNING [J].
WANG, LX ;
MENDEL, JM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1992, 3 (05) :807-814
[8]   GENERATING FUZZY RULES BY LEARNING FROM EXAMPLES [J].
WANG, LX ;
MENDEL, JM .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1992, 22 (06) :1414-1427
[9]   Adaptive fuzzy CMAC control for a class of nonlinear systems with smooth compensation [J].
Wu, T. -F. ;
Tsai, P. -S. ;
Chang, F. -R. ;
Wang, L. -S. .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2006, 153 (06) :647-657
[10]   Lyapunov Stability and Strong Passivity Analysis for Nonlinear Descriptor Systems [J].
Yang, Chunyu ;
Sun, Jing ;
Zhang, Qingling ;
Ma, Xiaoping .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2013, 60 (04) :1003-1012