Human-computer collaboration for skin cancer recognition

被引:496
作者
Tschandl, Philipp [1 ]
Rinner, Christoph [2 ]
Apalla, Zoe [3 ]
Argenziano, Giuseppe [4 ]
Codella, Noel [5 ]
Halpern, Allan [6 ]
Janda, Monika [7 ]
Lallas, Aimilios [3 ]
Longo, Caterina [8 ,9 ]
Malvehy, Josep [10 ,11 ]
Paoli, John [12 ,13 ]
Puig, Susana [10 ,11 ]
Rosendahl, Cliff [14 ]
Soyer, H. Peter [15 ]
Zalaudek, Iris [16 ]
Kittler, Harald [1 ]
机构
[1] Med Univ Vienna, Dept Dermatol, ViDIR Grp, Vienna, Austria
[2] Med Univ Vienna, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Vienna, Austria
[3] Aristotle Univ Thessaloniki, Dept Dermatol, Thessaloniki, Greece
[4] Univ Campania, Dermatol Unit, Naples, Italy
[5] IBM TJ Watson Res Ctr, New York, NY USA
[6] Mem Sloan Kettering Canc Ctr, Dermatol Serv, 1275 York Ave, New York, NY 10021 USA
[7] Univ Queensland, Fac Med, Ctr Hlth Serv Res, Brisbane, Qld, Australia
[8] Univ Modena & Reggio Emilia, Dermatol Unit, Modena, Italy
[9] Zienda Unita Sanitaria Locale IRCCS Reggio, Ctr Oncol Ad Alta Tecnol Diagnost Dermatol, Reggio Emilia, Italy
[10] Univ Barcelona, IDIBAPS, Hosp Clin Barcelona, Melanoma Unit,Dermatol Dept, Barcelona, Spain
[11] Inst Salud Carlos III, Ctr Invest Biomed Red Enfermedades Raras CIBER ER, Barcelona, Spain
[12] Univ Gothenburg, Sahlgrenska Acad, Inst Clin Sci, Dept Dermatol & Venereol, Gothenburg, Sweden
[13] Sahlgrens Univ Hosp, Reg Vastra Gotaland, Dept Dermatol & Venereol, Gothenburg, Sweden
[14] Univ Queensland, Fac Med, Brisbane, Qld, Australia
[15] Univ Queensland, Diamantina Inst, Dermatol Res Ctr, Brisbane, Qld, Australia
[16] Med Univ Trieste, Dept Dermatol, Trieste, Italy
基金
英国医学研究理事会;
关键词
CLASSIFICATION; ACCURACY;
D O I
10.1038/s41591-020-0942-0
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The rapid increase in telemedicine coupled with recent advances in diagnostic artificial intelligence (AI) create the imperative to consider the opportunities and risks of inserting AI-based support into new paradigms of care. Here we build on recent achievements in the accuracy of image-based AI for skin cancer diagnosis to address the effects of varied representations of AI-based support across different levels of clinical expertise and multiple clinical workflows. We find that good quality AI-based support of clinical decision-making improves diagnostic accuracy over that of either AI or physicians alone, and that the least experienced clinicians gain the most from AI-based support. We further find that AI-based multiclass probabilities outperformed content-based image retrieval (CBIR) representations of AI in the mobile technology environment, and AI-based support had utility in simulations of second opinions and of telemedicine triage. In addition to demonstrating the potential benefits associated with good quality AI in the hands of non-expert clinicians, we find that faulty AI can mislead the entire spectrum of clinicians, including experts. Lastly, we show that insights derived from AI class-activation maps can inform improvements in human diagnosis. Together, our approach and findings offer a framework for future studies across the spectrum of image-based diagnostics to improve human-computer collaboration in clinical practice. A systematic evaluation of the value of AI-based decision support in skin tumor diagnosis demonstrates the superiority of human-computer collaboration over each individual approach and supports the potential of automated approaches in diagnostic medicine.
引用
收藏
页码:1229 / +
页数:10
相关论文
共 42 条
[1]   Improving Dermoscopy Image Classification Using Color Constancy [J].
Barata, Catarina ;
Celebi, M. Emre ;
Marques, Jorge S. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (03) :1146-1152
[2]   Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet [J].
Bien, Nicholas ;
Rajpurkar, Pranav ;
Ball, Robyn L. ;
Irvin, Jeremy ;
Park, Allison ;
Jones, Erik ;
Bereket, Michael ;
Patel, Bhavik N. ;
Yeom, Kristen W. ;
Shpanskaya, Katie ;
Halabi, Safwan ;
Zucker, Evan ;
Fanton, Gary ;
Amanatullah, Derek F. ;
Beaulieu, Christopher F. ;
Riley, Geoffrey M. ;
Stewart, Russell J. ;
Blankenberg, Francis G. ;
Larson, David B. ;
Jones, Ricky H. ;
Langlotz, Curtis P. ;
Ng, Andrew Y. ;
Lungren, Matthew P. .
PLOS MEDICINE, 2018, 15 (11)
[3]  
Bissoto A., 2019, CONSTRUCTING BIAS SK
[4]  
Cai C. J., 2019, P ACM HUM COMP INT A
[5]   Human-Centered Tools for Coping with Imperfect Algorithms During Medical Decision-Making [J].
Cai, Carrie J. ;
Reif, Emily ;
Hegde, Narayan ;
Hipp, Jason ;
Kim, Been ;
Smilkov, Daniel ;
Wattenberg, Martin ;
Viegas, Fernanda ;
Corrado, Greg S. ;
Stumpe, Martin C. ;
Terry, Michael .
CHI 2019: PROCEEDINGS OF THE 2019 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, 2019,
[6]  
Codella Noel C. F., 2018, Understanding and Interpreting Machine Learning in Medical Image Computing Applications. First International Workshops MLCN 2018, DLF 2018, and iMIMIC 2018. Held in Conjunction with MICCAI 2018. Proceedings: Lecture Notes in Computer Science (LNCS 11038), P97, DOI 10.1007/978-3-030-02628-8_11
[7]  
Codella Noel, 2019, arXiv
[8]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[9]   Adversarial attacks on medical machine learning [J].
Finlayson, Samuel G. ;
Bowers, John D. ;
Ito, Joichi ;
Zittrain, Jonathan L. ;
Beam, Andrew L. ;
Kohane, Isaac S. .
SCIENCE, 2019, 363 (6433) :1287-1289
[10]   Effects of computerized clinical decision support systems on practitioner performance and patient outcomes - A systematic review [J].
Garg, AX ;
Adhikari, NKJ ;
McDonald, H ;
Rosas-Arellano, MP ;
Devereaux, PJ ;
Beyene, J ;
Sam, J ;
Haynes, RB .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2005, 293 (10) :1223-1238