Tumour-on-a-chip provides an optical window into nanoparticle tissue transport

被引:250
作者
Albanese, Alexandre [1 ,2 ]
Lam, Alan K. [1 ,3 ]
Sykes, Edward A. [1 ,2 ]
Rocheleau, Jonathan V. [1 ,3 ,4 ]
Chan, Warren C. W. [1 ,2 ,5 ,6 ]
机构
[1] Univ Toronto, Inst Biomat & Biomed Engn, Toronto, ON, Canada
[2] Univ Toronto, Terrence Donnelly Ctr Cellular & Biomol Res, Toronto, ON, Canada
[3] Univ Hlth Network, Toronto Gen Res Inst, Toronto, ON, Canada
[4] Univ Toronto, Dept Physiol & Med, Toronto, ON, Canada
[5] Univ Toronto, Toronto, ON, Canada
[6] Univ Toronto, Dept Chem, Toronto, ON M5S 1A1, Canada
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
加拿大自然科学与工程研究理事会;
关键词
GOLD NANOPARTICLES; IN-VIVO; SIZE; CANCER; SPHEROIDS; DELIVERY; MICROENVIRONMENT; THERAPEUTICS; MICROSCOPY; SYSTEMS;
D O I
10.1038/ncomms3718
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nanomaterials are used for numerous biomedical applications, but the selection of optimal properties for maximum delivery remains challenging. Thus, there is a significant interest in elucidating the nano-bio interactions underlying tissue accumulation. To date, researchers have relied on cell culture or animal models to study nano-bio interactions. However, cell cultures lack the complexity of biological tissues and animal models are prohibitively slow and expensive. Here we report a tumour-on-a-chip system where incorporation of tumour-like spheroids into a microfluidic channel permits real-time analysis of nanoparticle (NP) accumulation at physiological flow conditions. We show that penetration of NPs into the tissue is limited by their diameter and that retention can be improved by receptor targeting. NP transport is predominantly diffusion-limited with convection improving accumulation mostly at the tissue perimeter. A murine tumour model confirms these findings and demonstrates that the tumour-on-a-chip can be useful for screening optimal NP designs prior to in vivo studies.
引用
收藏
页数:8
相关论文
共 30 条
[1]  
Albanese A, 2012, ANNU REV BIOMED ENG, V14, P1, DOI [10.1146/annurev-bioeng-071811-150124, 10.1146/annurev.bioeng-071811-150124]
[2]  
Cabral H, 2011, NAT NANOTECHNOL, V6, P815, DOI [10.1038/nnano.2011.166, 10.1038/NNANO.2011.166]
[3]  
Chauhan VP, 2012, NAT NANOTECHNOL, V7, P383, DOI [10.1038/nnano.2012.45, 10.1038/NNANO.2012.45]
[4]   Fluorescence-Tagged Gold Nanoparticles for Rapidly Characterizing the Size-Dependent Biodistribution in Tumor Models [J].
Chou, Leo Y. T. ;
Chan, Warren C. W. .
ADVANCED HEALTHCARE MATERIALS, 2012, 1 (06) :714-721
[5]   Visualizing Quantum Dots in Biological Samples Using Silver Staining [J].
Chou, Leo Y. T. ;
Fischer, Hans C. ;
Perrault, Steve D. ;
Chan, Warren C. W. .
ANALYTICAL CHEMISTRY, 2009, 81 (11) :4560-4565
[6]  
Dafni H, 2002, CANCER RES, V62, P6731
[7]   Rab4 and cellubrevin define different early endosome populations on the pathway of transferrin receptor recycling [J].
Daro, E ;
vanderSluijs, P ;
Galli, T ;
Mellman, I .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9559-9564
[8]   Nanoparticle therapeutics: an emerging treatment modality for cancer [J].
Davis, Mark E. ;
Chen, Zhuo ;
Shin, Dong M. .
NATURE REVIEWS DRUG DISCOVERY, 2008, 7 (09) :771-782
[9]   Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo [J].
Farokhzad, OC ;
Cheng, JJ ;
Teply, BA ;
Sherifi, I ;
Jon, S ;
Kantoff, PW ;
Richie, JP ;
Langer, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (16) :6315-6320
[10]   Spatio-temporal modeling of nanoparticle delivery to multicellular tumor spheroids [J].
Goodman, Thomas T. ;
Chen, Jingyang ;
Matveev, Konstantin ;
Pun, Suzie H. .
BIOTECHNOLOGY AND BIOENGINEERING, 2008, 101 (02) :388-399