Nonlinear subdiffusive fractional equations and the aggregation phenomenon

被引:16
作者
Fedotov, Sergei [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
来源
PHYSICAL REVIEW E | 2013年 / 88卷 / 03期
基金
英国工程与自然科学研究理事会;
关键词
TIME RANDOM-WALKS; ANOMALOUS-DIFFUSION; DERIVATION; GUIDE;
D O I
10.1103/PhysRevE.88.032104
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that these equations describe the transition from an intermediate subdiffusive regime to asymptotically normal advection-diffusion transport regime. This transition is governed by nonlinear tempering parameter that generalizes the standard linear tempering. We illustrate the general results through the use of the examples from cell and population biology. We find that a nonuniform anomalous exponent has a strong influence on the aggregation phenomenon.
引用
收藏
页数:9
相关论文
共 43 条
[1]   Reaction-subdiffusion and reaction-superdiffusion equations for evanescent particles performing continuous-time random walks [J].
Abad, E. ;
Yuste, S. B. ;
Lindenberg, Katja .
PHYSICAL REVIEW E, 2010, 81 (03)
[2]   Continuous Time Random Walks with Reactions Forcing and Trapping [J].
Angstmann, C. N. ;
Donnelly, I. C. ;
Henry, B. I. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (02) :17-27
[3]   A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion [J].
Anguige, K. ;
Schmeiser, C. .
JOURNAL OF MATHEMATICAL BIOLOGY, 2009, 58 (03) :395-427
[4]  
[Anonymous], 2007, BIOL CANC
[5]   From continuous time random walks to the fractional Fokker-Planck equation [J].
Barkai, E ;
Metzler, R ;
Klafter, J .
PHYSICAL REVIEW E, 2000, 61 (01) :132-138
[6]   Aging continuous time random walks [J].
Barkai, E ;
Cheng, YC .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (14) :6167-6178
[7]   Fluid limit of the continuous-time random walk with general Levy jump distribution functions [J].
Cartea, A. ;
del-Castillo-Negrete, D. .
PHYSICAL REVIEW E, 2007, 76 (04)
[8]   Fractional diffusion in inhomogeneous media [J].
Chechkin, AV ;
Gorenflo, R ;
Sokolov, IM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (42) :L679-L684
[9]  
Cox D., 2017, The theory of stochastic processes
[10]   Non-homogeneous Random Walks, Subdiffusive Migration of Cells and Anomalous Chemotaxis [J].
Fedotov, S. ;
Ivanov, A. O. ;
Zubarev, A. Y. .
MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2013, 8 (02) :28-43