FOUR POSITIVE SOLUTIONS OF A QUASILINEAR ELLIPTIC EQUATION IN RN

被引:3
作者
Liao, Fang-Fang [1 ,2 ]
Tang, Chun-Lei [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Xinyu 1 Middle Sch Jiangxi, Xinyu 338000, Peoples R China
基金
中国国家自然科学基金;
关键词
p-Laplacian; Palais-Smale decomposition lemma; Nehari manifold; positive solutions; CONVEX NONLINEARITIES; GROUND-STATES; CONCAVE;
D O I
10.3934/cpaa.2013.12.2577
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence of multiple positive solutions of a quasilinear elliptic equation {-Delta p(u) + u(p-1) = a(x)u(q-1) + lambda h(x)u(r-1) in R-N; u >= 0 a.e. x is an element of R-N; (1) u is an element of W-1,W-p(R-N), where 1 < p <= 2, N > p and 1 < r < p < q < p* (= pN/N-p). A Nehari manifold is defined by a C-1-functional I and is decomposed into two parts. Our work is to find four positive solutions of Eq. ( I) when parameter lambda is sufficiently small.
引用
收藏
页码:2577 / 2600
页数:24
相关论文
共 16 条
[1]  
Adachi S, 2000, CALC VAR PARTIAL DIF, V11, P63, DOI 10.1007/s005260050003
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
[Anonymous], 1993, PROGR NONLINEAR DIFF
[4]   CONCENTRATION COMPACTNESS PRINCIPLE AND QUASI-LINEAR ELLIPTIC-EQUATIONS IN RN [J].
BADIALE, M ;
CITTI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (11) :1795-1818
[5]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[6]  
Cazzola F., 2003, ANN I H POINCARE-AN, V20, P947
[7]  
Chabrowski J, 2002, MATH NACHR, V233, P55, DOI 10.1002/1522-2616(200201)233:1<55::AID-MANA55>3.3.CO
[8]  
2-I
[9]   Symmetry of ground states of p-Laplace equations via the moving plane method [J].
Damascelli, L ;
Pacella, F ;
Ramaswamy, M .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1999, 148 (04) :291-308
[10]   Local superlinearity and sublinearity for indefinite semilinear elliptic problems [J].
De Figueiredo, DG ;
Gossez, JP ;
Ubilla, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 199 (02) :452-467