Invariances in variance estimates

被引:33
作者
Barthe, F. [1 ]
Cordero-Erausquin, D. [2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 09, France
[2] Univ Paris 06, Inst Math Jussieu, F-75252 Paris 05, France
关键词
CONSERVATIVE SPIN SYSTEMS; CONVEX-BODIES; CONCAVE FUNCTIONS; SPECTRAL GAP; INEQUALITIES; SETS;
D O I
10.1112/plms/pds011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide variants and improvements of the Brascamp-Lieb variance inequality which takes into account the invariance properties of the underlying measure. This is applied to spectral gap estimates for log-concave measures with many symmetries and to non-interacting conservative spin systems.
引用
收藏
页码:33 / 64
页数:32
相关论文
共 33 条
[1]  
[Anonymous], 1994, PROGR MATH
[2]   The central limit problem for convex bodies [J].
Anttila, M ;
Ball, K ;
Perissinaki, I .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (12) :4723-4735
[3]   LOGARITHMICALLY CONCAVE FUNCTIONS AND SECTIONS OF CONVEX-SETS IN RN [J].
BALL, K .
STUDIA MATHEMATICA, 1988, 88 (01) :69-84
[4]   SHADOWS OF CONVEX-BODIES [J].
BALL, K .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 327 (02) :891-901
[5]   On a reverse form of the Brascamp-Lieb inequality [J].
Barthe, F .
INVENTIONES MATHEMATICAE, 1998, 134 (02) :335-361
[6]   Remarks on non-interacting conservative spin systems: The case of gamma distributions [J].
Barthe, F. ;
Wolff, P. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2009, 119 (08) :2711-2723
[7]  
Barthe F., AM J MATH IN PRESS
[8]   Isoperimetric and analytic inequalities for log-concave probability measures [J].
Bobkov, SG .
ANNALS OF PROBABILITY, 1999, 27 (04) :1903-1921
[9]   CONVEX MEASURES ON LOCALLY CONVEX-SPACES [J].
BORELL, C .
ARKIV FOR MATEMATIK, 1974, 12 (02) :239-252
[10]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389