Threading Immobilized DNA Molecules through a Solid-State Nanopore at >100 μs per Base Rate

被引:51
作者
Hyun, Changbae [1 ]
Kaur, Harpreet [1 ]
Rollings, Ryan [1 ]
Xiao, Min [1 ]
Li, Jiali [1 ]
机构
[1] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
关键词
solid-state nanopore; DNA; probe tip; tuning fork; tethered DNA translocation; nanopositioning; DNA capture distance; ACCESS RESISTANCE; TRANSLOCATION; PROTEINS; TRANSPORT; DYNAMICS; GRAPHENE; SENSORS;
D O I
10.1021/nn4012434
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In pursuit of developing solid-state nanopore-based DNA sequencing technology, we have designed and constructed an apparatus that can place a DNA-tethered probe tip near a solid-state nanopore, control the DNA moving speed, and measure the ionic current change when a DNA molecule is captured and released from a nanopore. The probe tip's position is sensed and controlled by a tuning fork based feedback force sensor and a nanopositioning system. Using this newly constructed apparatus, a DNA strand moving rate of >100 mu s/base or <1 nm/ms in silicon nitride nanopores has been accomplished. This rate is 10 times slower than by manipulating DNA-tethered beads using optical tweezers and 1000 times slower than free DNA translocation through solid-state nanopores reported previously, which provides enough temporal resolution to read each base on a tethered DNA molecule using available single-channel recording electronics on the market today. This apparatus can measure three signals simultaneously: ionic current through a nanopore, tip position, and tip vibrational amplitude during the process of a DNA molecule's capture and release by a nanopore. We show results of this apparatus for measuring lambda DNA's capture and release distances and for current blockage signals of lambda DNA molecules biotinylated with one end and with both ends tethered to a tip.
引用
收藏
页码:5892 / 5900
页数:9
相关论文
共 50 条
[1]   Directly Observing the Motion of DNA Molecules near Solid-State Nanopores [J].
Ando, Genki ;
Hyun, Changbae ;
Li, Jiali ;
Mitsui, Toshiyuki .
ACS NANO, 2012, 6 (11) :10090-10097
[2]   The potential and challenges of nanopore sequencing [J].
Branton, Daniel ;
Deamer, David W. ;
Marziali, Andre ;
Bayley, Hagan ;
Benner, Steven A. ;
Butler, Thomas ;
Di Ventra, Massimiliano ;
Garaj, Slaven ;
Hibbs, Andrew ;
Huang, Xiaohua ;
Jovanovich, Stevan B. ;
Krstic, Predrag S. ;
Lindsay, Stuart ;
Ling, Xinsheng Sean ;
Mastrangelo, Carlos H. ;
Meller, Amit ;
Oliver, John S. ;
Pershin, Yuriy V. ;
Ramsey, J. Michael ;
Riehn, Robert ;
Soni, Gautam V. ;
Tabard-Cossa, Vincent ;
Wanunu, Meni ;
Wiggin, Matthew ;
Schloss, Jeffery A. .
NATURE BIOTECHNOLOGY, 2008, 26 (10) :1146-1153
[3]   Protein Transport through a Narrow Solid-State Nanopore at High Voltage: Experiments and Theory [J].
Cressiot, Benjamin ;
Oukhaled, Abdelghani ;
Patriarche, Gilles ;
Pastoriza-Gallego, Manuela ;
Betton, Jean-Michel ;
Auvray, Loic ;
Muthukumar, Murugappan ;
Bacri, Laurent ;
Pelta, Juan .
ACS NANO, 2012, 6 (07) :6236-6243
[4]   Solid-state nanopores [J].
Dekker, Cees .
NATURE NANOTECHNOLOGY, 2007, 2 (04) :209-215
[5]  
Edwards H, 1997, REV SCI INSTRUM, V70, P3614
[6]  
Egerton R.F., 1996, ELECT ENERGY LOSS SP
[7]   Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis [J].
Firnkes, Matthias ;
Pedone, Daniel ;
Knezevic, Jelena ;
Doeblinger, Markus ;
Rant, Ulrich .
NANO LETTERS, 2010, 10 (06) :2162-2167
[8]   Detecting single stranded DNA with a solid state nanopore [J].
Fologea, D ;
Gershow, M ;
Ledden, B ;
McNabb, DS ;
Golovchenko, JA ;
Li, JL .
NANO LETTERS, 2005, 5 (10) :1905-1909
[9]   Slowing DNA translocation in a solid-state nanopore [J].
Fologea, D ;
Uplinger, J ;
Thomas, B ;
McNabb, DS ;
Li, JL .
NANO LETTERS, 2005, 5 (09) :1734-1737
[10]   Electrical characterization of protein molecules by a solid-state nanopore [J].
Fologea, Daniel ;
Ledden, Bradley ;
McNabb, David S. ;
Li, Jiali .
APPLIED PHYSICS LETTERS, 2007, 91 (05)