Reconstruction of Gaussian and log-normal fields with spectral smoothness

被引:30
作者
Oppermann, Niels [1 ]
Selig, Marco [1 ]
Bell, Michael R. [1 ]
Ensslin, Torsten A. [1 ]
机构
[1] Max Planck Inst Astrophys, D-85741 Garching, Germany
来源
PHYSICAL REVIEW E | 2013年 / 87卷 / 03期
关键词
LARGE-SCALE STRUCTURE; POWER-SPECTRUM; INFERENCE;
D O I
10.1103/PhysRevE.87.032136
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We develop a method to infer log-normal random fields from measurement data affected by Gaussian noise. The log-normal model is well suited to describe strictly positive signals with fluctuations whose amplitude varies over several orders of magnitude. We use the formalism of the minimum Gibbs free energy to derive an algorithm that uses the signal's correlation structure to regularize the reconstruction. The correlation structure, described by the signal's power spectrum, is thereby reconstructed from the same data set. We show that the minimization of the Gibbs free energy, corresponding to a Gaussian approximation to the posterior marginalized over the power spectrum, is equivalent to the empirical Bayes ansatz, in which the power spectrum is fixed to its maximum a posteriori value. We further introduce a prior for the power spectrum that enforces spectral smoothness. The appropriateness of this prior in different scenarios is discussed and its effects on the reconstruction's results are demonstrated. We validate the performance of our reconstruction algorithm in a series of one-and two-dimensional test cases with varying degrees of nonlinearity and different noise levels. DOI:10.1103/PhysRevE.87.032136
引用
收藏
页数:16
相关论文
共 31 条
[1]   A Cox process with log-normal intensity [J].
Basu, S ;
Dassios, A .
INSURANCE MATHEMATICS & ECONOMICS, 2002, 31 (02) :297-302
[2]  
BENES V, 2002, R022001 AALB U DEP M
[3]   Space-time multi type log Gaussian Cox processes with a view to modelling weeds [J].
Brix, A ;
Moller, J .
SCANDINAVIAN JOURNAL OF STATISTICS, 2001, 28 (03) :471-488
[4]   Spatiotemporal prediction for log-Gaussian Cox processes [J].
Brix, A ;
Diggle, PJ .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2001, 63 :823-841
[5]  
COLES P, 1991, MON NOT R ASTRON SOC, V248, P1
[6]   Reply to "Comment on 'Inference with minimal Gibbs free energy in information field theory' " [J].
Ensslin, Torsten A. ;
Weig, Cornelius .
PHYSICAL REVIEW E, 2012, 85 (03)
[7]   Reconstruction of signals with unknown spectra in information field theory with parameter uncertainty [J].
Ensslin, Torsten A. ;
Frommert, Mona .
PHYSICAL REVIEW D, 2011, 83 (10)
[8]   Inference with minimal Gibbs free energy in information field theory [J].
Ensslin, Torsten A. ;
Weig, Cornelius .
PHYSICAL REVIEW E, 2010, 82 (05)
[9]   Information field theory for cosmological perturbation reconstruction and nonlinear signal analysis [J].
Ensslin, Torsten A. ;
Frommert, Mona ;
Kitaura, Francisco S. .
PHYSICAL REVIEW D, 2009, 80 (10)
[10]   HEALPix:: A framework for high-resolution discretization and fast analysis of data distributed on the sphere [J].
Górski, KM ;
Hivon, E ;
Banday, AJ ;
Wandelt, BD ;
Hansen, FK ;
Reinecke, M ;
Bartelmann, M .
ASTROPHYSICAL JOURNAL, 2005, 622 (02) :759-771