Measuring the EoR Power Spectrum without Measuring the EoR Power Spectrum

被引:21
作者
Beane, Angus [1 ,2 ]
Villaescusa-Navarro, Francisco [1 ]
Lidz, Adam [2 ]
机构
[1] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA
[2] Univ Penn, Dept Phys & Astron, 209 South 33rd St, Philadelphia, PA 19104 USA
关键词
cosmology: theory; dark ages; reionization; first stars; diffuse radiation; large-scale structure of universe; LYMAN-ALPHA EMISSION; 21; CM; REIONIZATION; INTENSITY; FLUCTUATIONS; SIMULATION; CARBON; GAS;
D O I
10.3847/1538-4357/ab0a08
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The large-scale structure of the universe should soon be measured at high redshift during the epoch of reionization (EoR) through line-intensity mapping. A number of ongoing and planned surveys are using the 21 cm line to trace neutral hydrogen fluctuations in the intergalactic medium during the EoR. These may be fruitfully combined with separate efforts to measure large-scale emission fluctuations from galactic lines such as [C II],CO, H-alpha, and Ly alpha during the same epoch. The large-scale power spectrum of each line encodes important information about reionization, with the 21 cm power spectrum providing a relatively direct tracer of the ionization history. Here we show that the large-scale 21 cm power spectrum can be extracted using only cross-power spectra between the 21 cm fluctuations and each of two separate line-intensity mapping data cubes. This technique is more robust to residual foregrounds than the usual 21 cm auto-power spectrum measurements and so can help in verifying auto-spectrum detections. We characterize the accuracy of this method using numerical simulations and find that the large-scale 21 cm power spectrum can be inferred to a simulated accuracy of within 5% for most of the EoR. Our estimate of the 21 cm power spectrum reaches 0.6% accuracy on a scale of k similar to 0.1 Mpc(-1) at < x(i)> = 0.36 (z = 8.34 in our model). An extension from two to N additional lines would provide N(N - 1)/2 cross-checks on the large-scale 21 cm power spectrum. This work strongly motivates redundant line-intensity mapping surveys probing the same cosmological volumes.
引用
收藏
页数:8
相关论文
共 53 条
[1]  
Aghanim N, 2018, ARXIV180706209
[2]  
[Anonymous], J COSMOL ASTROPART P
[3]   Extracting Bias Using the Cross-bispectrum: An EoR and 21 cm-[C II]-[C II] Case Study [J].
Beane, Angus ;
Lidz, Adam .
ASTROPHYSICAL JOURNAL, 2018, 867 (01)
[4]   Foregrounds for observations of the cosmological 21 cm line I. First Westerbork measurements of Galactic emission at 150 MHz in a low latitude field [J].
Bernardi, G. ;
de Bruyn, A. G. ;
Brentjens, M. A. ;
Ciardi, B. ;
Harker, G. ;
Jelic, V. ;
Koopmans, L. V. E. ;
Labropoulos, P. ;
Offringa, A. ;
Pandey, V. N. ;
Schaye, J. ;
Thomas, R. M. ;
Yatawatta, S. ;
Zaroubi, S. .
ASTRONOMY & ASTROPHYSICS, 2009, 500 (03) :965-979
[5]   An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 [J].
Chang, Tzu-Ching ;
Pen, Ue-Li ;
Bandura, Kevin ;
Peterson, Jeffrey B. .
NATURE, 2010, 466 (7305) :463-465
[6]  
Chung D. T., 2018, ARXIV181208135
[7]   On Estimation of Contamination from Hydrogen Cyanide in Carbon Monoxide Line-intensity Mapping [J].
Chung, Dongwoo T. ;
Li, Tony Y. ;
Viero, Marco P. ;
Church, Sarah E. ;
Wechsler, Risa H. .
ASTROPHYSICAL JOURNAL, 2017, 846 (01)
[8]  
Cooray A., 2016, ARXIV160205178
[9]   The TIME-Pilot Intensity Mapping Experiment [J].
Crites, A. T. ;
Bock, J. J. ;
Bradford, C. M. ;
Chang, T. C. ;
Cooray, A. R. ;
Duband, L. ;
Gong, Y. ;
Hailey-Dunsheath, S. ;
Hunacek, J. ;
Koch, P. M. ;
Li, C. T. ;
O'Brient, R. C. ;
Prouve, T. ;
Shirokoff, E. ;
Silva, M. B. ;
Staniszewski, Z. ;
Uzgil, B. ;
Zemcov, M. .
MILLIMETER, SUBMILLIMETER, AND FAR-INFRARED DETECTORS AND INSTRUMENTATION FOR ASTRONOMY VII, 2014, 9153
[10]   Intensity mapping with SDSS/BOSS Lyman-α emission, quasars, and their Lyman-α forest [J].
Croft, Rupert A. C. ;
Miralda-Escude, Jordi ;
Zheng, Zheng ;
Blomqvist, Michael ;
Pieri, Matthew .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 481 (01) :1320-1336