A machine learning scheme for the catalytic activity of alloys with intrinsic descriptors

被引:80
作者
Yang, Ze [1 ]
Gao, Wang [1 ]
Jiang, Qing [1 ]
机构
[1] Jilin Univ, Sch Mat Sci & Engn, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON-DIOXIDE; CO2; ELECTROREDUCTION; REDUCTION; METHANE; SURFACE; PREDICTION; DESIGN; TRENDS; COPPER;
D O I
10.1039/d0ta06203k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The application of density functional theory (DFT) has been accelerating the screening and design process of alloy catalysts for the carbon dioxide reduction reaction (CO2RR), but the catalyst design principle still cannot be universally used to date because of the time-consuming DFT calculations and the unclear structure-property relationship of alloy catalysts. To address these issues, we combine machine learning methods and descriptors based on the intrinsic properties of substrates and adsorbates to develop a model, which allows rapid screening through a large phase space of alloys with the usual DFT accuracy. Our ML scheme sheds light on the size of active centers on transition metals and alloys, the effect of alloying on engineering adsorption energy, and the coupling mechanism of different adsorbates with substrates. These findings not only help us understand the structure-property relationship of alloy catalysts and the reaction mechanism of the CO2RR, but also provide a basis for the design of catalysts. This universal design framework can be extended to other catalysts and other reactions towards efficient and cost-effective potential catalysts.
引用
收藏
页码:17507 / 17515
页数:9
相关论文
共 35 条
[1]   Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces [J].
Abild-Pedersen, F. ;
Greeley, J. ;
Studt, F. ;
Rossmeisl, J. ;
Munter, T. R. ;
Moses, P. G. ;
Skulason, E. ;
Bligaard, T. ;
Norskov, J. K. .
PHYSICAL REVIEW LETTERS, 2007, 99 (01)
[2]   SUBMODEL SELECTION AND EVALUATION IN REGRESSION - THE X-RANDOM CASE [J].
BREIMAN, L ;
SPECTOR, P .
INTERNATIONAL STATISTICAL REVIEW, 1992, 60 (03) :291-319
[3]   Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers [J].
Calle-Vallejo, Federico ;
Martinez, Jose I. ;
Garcia-Lastra, Juan M. ;
Sautet, Philippe ;
Loffreda, David .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (32) :8316-8319
[4]   Quantum Mechanical Screening of Single-Atom Bimetallic Alloys for the Selective Reduction of CO2 to C1 Hydrocarbons [J].
Cheng, Mu-Jeng ;
Clark, Ezra L. ;
Pham, Hieu H. ;
Bell, Alexis T. ;
Head-Gordon, Martin .
ACS CATALYSIS, 2016, 6 (11) :7769-7777
[5]   A decision-theoretic generalization of on-line learning and an application to boosting [J].
Freund, Y ;
Schapire, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1997, 55 (01) :119-139
[6]   Stochastic gradient boosting [J].
Friedman, JH .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) :367-378
[7]   Determining the adsorption energies of small molecules with the intrinsic properties of adsorbates and substrates [J].
Gao, Wang ;
Chen, Yun ;
Li, Bo ;
Liu, Shan-Ping ;
Liu, Xin ;
Jiang, Qing .
NATURE COMMUNICATIONS, 2020, 11 (01)
[8]   Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].
Hammer, B ;
Hansen, LB ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (11) :7413-7421
[9]  
Hammer B, 2000, ADV CATAL, V45, P71
[10]   Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies [J].
Hansen, Katja ;
Montavon, Gregoire ;
Biegler, Franziska ;
Fazli, Siamac ;
Rupp, Matthias ;
Scheffler, Matthias ;
von Lilienfeld, O. Anatole ;
Tkatchenko, Alexandre ;
Mueller, Klaus-Robert .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (08) :3404-3419