On the nanoindentation hardness of Cu-Zr-Al/Cu nanolaminates

被引:10
作者
Ma, Y. [1 ]
Peng, G. J. [1 ]
Chen, H. [1 ]
Jiang, W. F. [1 ]
Zhang, T. H. [1 ]
机构
[1] Zhejiang Univ Technol, Coll Mech Engn, Hangzhou 310014, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanolaminates; Nanoindentation; Amorphous alloy; Hardness; SHEAR TRANSFORMATION ZONE; METALLIC GLASSY FILMS; MECHANICAL-BEHAVIOR; CREEP-BEHAVIOR; THIN-FILMS; SIZE; STRENGTH; DEFORMATION; MULTILAYERS; PLASTICITY;
D O I
10.1016/j.jnoncrysol.2017.12.045
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nanolaminates consisting of individual amorphous Cu-Zr-Al layers and nanocrystalline Cu layers on Si substrates were prepared by alternatively magnetron sputtering and hardness measurements were conducted upon nanoindentation with a standard Berkovich indenter. Indentation hardness showed a strong size effect in single Cu-Zr-Al film, its decline trend was slower in the nanolaminates with thinner amorphous layers. While experimental hardness was obviously below the expected rule-of-mixture value for all the nanolaminates. Finite element modelling (FEM) analysis was performed in each sample to explore stress distribution beneath indenter. A higher proportion of Cu layers has been involved into plastic region than the nominal value. Besides, interfacial barrier strength was estimated for each sample. The experimental results could be well described by the modified rule of mixture integrated with true ratio of Cu to Cu-Zr-Al in plastic region and the interface strengthen effect.
引用
收藏
页码:208 / 212
页数:5
相关论文
共 38 条
[21]   Assessing the interfacial strength of an amorphous-crystalline interface [J].
Liu, M. C. ;
Huang, J. C. ;
Fong, Y. T. ;
Ju, S. P. ;
Du, X. H. ;
Pei, H. J. ;
Nieh, T. G. .
ACTA MATERIALIA, 2013, 61 (09) :3304-3313
[22]   Revealing the Maximum Strength in Nanotwinned Copper [J].
Lu, L. ;
Chen, X. ;
Huang, X. ;
Lu, K. .
SCIENCE, 2009, 323 (5914) :607-610
[23]   Nanoindentation investigation on creep behavior of amorphous Cu-Zr-AI/nano crystalline Cu nanolaminates [J].
Ma, Y. ;
Peng, G. J. ;
Feng, Y. H. ;
Zhang, T. H. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2017, 465 :8-16
[24]   Nanoindentation study on shear transformation zone in a Cu-Zr-Al metallic glassy film with different thickness [J].
Ma, Y. ;
Peng, G. J. ;
Jiang, W. F. ;
Chen, H. ;
Zhang, T. H. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 442 :67-72
[25]   Nanoindentation investigation on the creep mechanism in metallic glassy films [J].
Ma, Y. ;
Peng, G. J. ;
Feng, Y. H. ;
Zhang, T. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 651 :548-555
[26]   Loading rate effect on the creep behavior of metallic glassy films and its correlation with the shear transformation zone [J].
Ma, Y. ;
Ye, J. H. ;
Peng, G. J. ;
Wen, D. H. ;
Zhang, T. H. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 622 :76-81
[27]   The critical length of shear bands in metallic glass [J].
Matsumoto, R. ;
Miyazaki, N. .
SCRIPTA MATERIALIA, 2008, 59 (01) :107-110
[28]   Correlation between nanomechanical and piezoelectric properties of thin films: An experimental and finite element study [J].
Nili, Hussein ;
Cheng, Guang ;
Venkatesh, T. A. ;
Sriram, Sharath ;
Bhaskaran, Madhu .
MATERIALS LETTERS, 2013, 90 :148-151
[29]   Indentation size effects in crystalline materials: A law for strain gradient plasticity [J].
Nix, WD ;
Gao, HJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 1998, 46 (03) :411-425
[30]   Determination of shear creep compliance of linear viscoelastic solids by instrumented indentation when the contact area has a single maximum [J].
Peng, Guangjian ;
Zhang, Taihua ;
Feng, Yihui ;
Yang, Rong .
JOURNAL OF MATERIALS RESEARCH, 2012, 27 (12) :1565-1572